首页|AF2GNN: Graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification
AF2GNN: Graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
Hyperspectral image classification (HSIC) is essential in remote sensing image analysis. Applying a graph neural network (GNN) to hyperspectral image (HSI) classification has attracted increasing attention. However, the available GNNs for HSIC only adopt a kind of graph filter and an aggregator, which cannot well deal with the problems of land cover discrimination, noise impaction, and spatial feature learning. To overcome these problems, a graph convolution with adaptive filters and aggregator fusion (AF2GNN) is developed for HSIC. To reduce the number of graph nodes, a superpixel segment algorithm is employed to refine the local spatial features of the HSI. A two-layer 1D CNN is proposed to transform the spectral features of superpixels. In addition, a linear function is designed to combine the different graph filters, with which the graph filter can be adaptively determined by training different weight matrices. Moreover, degree-scalers are defined to combine the multiple filters and present the graph structure. Finally, the AF2GNN is proposed to realize the adaptive filters and aggregator fusion mechanism within a single network. In the proposed network, a softMax function is utilized for graph feature interpretation and pixel-label prediction. Compared with state-of-the-art methods, the proposed method achieves superior experimental results. (c) 2022 Elsevier Inc. All rights reserved.