首页|Transmission factors, mechanical, and gamma ray attenuation properties of barium-phosphate-tungsten glasses: Incorporation impact of WO3

Transmission factors, mechanical, and gamma ray attenuation properties of barium-phosphate-tungsten glasses: Incorporation impact of WO3

扫码查看
? 2022 The AuthorsThe purpose of this study is to conduct a thorough examination of the direct and indirect impacts of increasing the quantity of heavy WO3 on gamma-ray transmission, shielding and mechanical properties for some selected barium-phosphate-tungsten glasses. Accordingly, mechanical properties of barium-phosphate-tungsten oxides with chemical formula (50-x)P2O5-50BaO-xWO3 (x = 0.0(S1), 5.0(S2), 10(S3), and 15(S4)) mol% was evaluated using Makishima-Mackenzie model. Next, newly online Phy-X/PSD software and Monte Carlo code were used to examine the gamma radiation characteristics. Gamma-ray transmission factor (TF) values were calculated for S1, S2, S3 and, S4 glass samples for a range of well-known radioisotope energies such for 67Ga, 57Co-57, 111In-111, 133Ba, 201Tl, 99 mTc, 51Cr, 131I, 58Co, 137Cs, 60Co. The total packing density (Vt) was enhanced from 0.589 for S1 glass sample (free with WO3) to 0.605 for S4 glass sample (with highest WO3 =15 mol%). The total energy dissociation (Gt) of the investigated glasses was increased with increasing the WO3 content: from 51.7 (kJ/cm3) for S1 glasses to 52.45 (kJ/cm3) for S4 glasses. All mechanical moduli were improved with increasing the tungsten trioxide concentration in the studied glasses. Poisson's ratios were increased with increasing the WO3 concentration. The trend of linear (LAC) and mass attenuation (MAC) coefficients were followed as: (LAC, MAC) S1 < (LAC, MAC) S2 < (LAC, MAC) S3 < (LAC, MAC) S4. Half (HVL) and tenth (TVL) value layers have the trend as (HVL, TVL) S1 > (HVL, TVL) S2 > (HVL, TVL) S3 > (HVL, TVL) S4. The effective atomic number (Zeff) and electron density (Neff) have the same trend. The lowest transmission Factor (TF) values for all glass specimens were examined at a thickness of 3 cm. Furthermore, the S4 sample displayed the least transmission tendency across all glass thicknesses evaluated.

BaO- P2O5- WO3 glass systemMCNPXMechanical propertiesRadiation shielding

Elshami W.、ALMisned G.、Rammah Y.S.、Ahmed E.M.、Ali F.T.、Baykal D.S.、Zakaly H.M.H.、Issa S.A.M.、Kilic G.、Ene A.、Tekin H.O.

展开 >

Department of Medical Diagnostic Imaging College of Health Sciences University of Sharjah

Department of Physics College of Science Princess Nourah Bint Abdulrahman University

Department of Physics Faculty of Science Menoufia University

Department of Physics College of Science Taif University

Center for Advanced Materials Research Research Institute of Sciences and Engineering University of Sharjah

Istanbul Kent University Vocational School of Health Sciences Medical Imaging Techniques

Institute of Physics and Technology Ural Federal University

Physics Department Faculty of Science University of Tabuk

Eskisehir Osmangazi University Faculty of Science and Letters Department of Physics

INPOLDE Research Center Department of Chemistry Physics and Environment Faculty of Sciences and Environment Dunarea de Jos University of Galati

展开 >

2022

Optik

Optik

EISCI
ISSN:0030-4026
年,卷(期):2022.267
  • 10
  • 55