首页|Enhanced bearing fault diagnosis using integral envelope spectrum from spectral coherence normalized with feature energy
Enhanced bearing fault diagnosis using integral envelope spectrum from spectral coherence normalized with feature energy
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
Enhanced envelope spectrum (EES) and improved envelope spectrum (IES) generated from spectral coherence (SCoh) are proven to be more robust fault detection tools than squared envelope spectrum (SES). However, EES cannot effectively detect the fault-induced components under strong interference noise and IES can only capture the information of a fault-sensitive resonance spectral frequency band. To overcome these problems, weighted combined envelope spectrum (WCES) from SCoh is proposed as a novel fault detector. WCES integrates the fault components distributed in multiple resonance frequency bands using normalized feature energy and removes the envelope spectrum slices with less fault information to exclude disturbance noises. The performance of WCES is validated using simulations and experiments and compared with the advanced envelope spectra. The results demonstrate that WCES can effectively detect bearing faults under strong interference noise and multiple resonances compared with the SES, EES and IES, and has potential application value in bearing diagnostics.