首页|Mechanosynthesis of multiferroic hybrid organic-inorganic [NH4][M(HCOO)3] M = Co2+,Mn2+,Zn2+,Ni2+, Cu2+ formate-based frameworks

Mechanosynthesis of multiferroic hybrid organic-inorganic [NH4][M(HCOO)3] M = Co2+,Mn2+,Zn2+,Ni2+, Cu2+ formate-based frameworks

扫码查看
The family of compounds with formula [NH4][M(HCOO)3], with M a divalent D-metal, is characterized by porous frameworks hosting NH4+ cations exhibiting at low temperature a spontaneous ferroelectric polarization. The presence of magnetically active divalent metal determines the occurrence of antiferromagnetic ordering below 30 K opening the avenue for a rational formulation of a new class of multiferroic materials. We demonstrate that this intriguing class of compounds can be synthetized with a mechanochemical approach. This novel route of synthesis was applied to the series [NH4][M(HCOO)3] with M= Cu2+, Co2+, Mn2+, Zn2+ and Ni2+ using as reactants ammonium formate and the corresponding di-hydrated metal formates. The milling duration of the process correlates with the thermal stability of the di-hydrated metal formates indicating that the first step of the mechanosynthesis process is represented by the removal of water molecules. The characterizations of the final products indicate the presence of single phase [NH4][M(HCOO)3] compounds with an excellent degree of crystallinity.

Hybrid organic-inorganic materialsMechanosynthesisMetal-organic frameworks

Vit V.、Righi L.、Orlandi F.、Griesi A.、Gemmi M.、Bersani D.、Calestani D.、Cugini F.、Solzi M.

展开 >

Department of Chemistry Life Sciences and Environmental Sustainability University of Parma

SIS Facility Rutherford Appleton Laboratory - STFC

Center for Nanotechnology Innovation @NEST Istituto Italiano di Tecnologia

IMEM-CNR

展开 >

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.899
  • 1
  • 33