首页|Discovery and Biochemical Characterization of N-methyltransferase Genes Involved in Purine Alkaloid Biosynthetic Pathway of Camellia gymnogyna Hung T.Chang (Theaceae) from Dayao Mountain
Discovery and Biochemical Characterization of N-methyltransferase Genes Involved in Purine Alkaloid Biosynthetic Pathway of Camellia gymnogyna Hung T.Chang (Theaceae) from Dayao Mountain
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
? 2022In the present study, purine alkaloid analysis and transcriptome of Camellia gymnogyna Hung T. Chang (Theaceae) from Dayao Mountain were performed by high-performance liquid chromatography (HPLC) and RNA-Seq, respectively. The results showed that the major purine alkaloids accumulated in Camellia gymnogyna Hung T. Chang (Theaceae) were theobromine together with a small amount of theacrine and caffeine. Through polymerase chain reaction (PCR), three types of cDNA encoding N-methyltransferases were isolated from the leaves of Camellia gymnogyna Hung T. Chang (Theaceae) and designated GCS1, GCS2, and GCS3. We subsequently expressed GCS1, GCS2, and GCS3 in Escherichia coli and incubated lysates of the bacterial cells with a variety of xanthine substrates in the presence of S-adenosyl-L-methionine as the methyl donor. We found that the recombinant GCS1 proteins catalyzed 1,3,7-trimethyluric acid to produce theacrine, the recombinant GCS3 proteins catalyzed 7-methylxanthine to produce theobromine, while the recombinant GCS2 proteins did not catalyze any xanthine derivatives. Simultaneous analysis of the expressions of GCS1, GCS2, GCS3, and a caffeine synthase gene (TCS1) in Camellia gymnogyna Hung T. Chang (Theaceae) and other tea plants provided a reference for further research on the functions of these genes.
Camellia gymnogynaCloning and expressionN-methyltransferase genesPurine alkaloidsTheaceae
Zhou M.-Z.、O'Neill Rothenberg D.、Zeng W.、Yan C.-Y.、Zeng Z.、Huang Y.-H.、Luo L.
展开 >
Department of Tea Science College of Horticulture South China Agricultural University