首页|Analysis and control of ultrafast demagnetization dynamics in ferrimagnetic Gdx(CoFe)1-x alloys
Analysis and control of ultrafast demagnetization dynamics in ferrimagnetic Gdx(CoFe)1-x alloys
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
? 2022 Elsevier B.V.Deep understanding and powerful control of the magnetization dynamics is of great importance for developing high speed spintronic devices. In this work, laser-induced ultrafast demagnetization process of Gdx(CoFe)1-x alloy films has been extensively studied by using the fs-laser pump-probe technique. Interestingly, it is found that by adjusting the Gd content x and hence the intersublattice 3d-4f exchange coupling strength, the demagnetization dynamics varies from a fast one-stage decay to a continuous or a discrete two-stage decay, which is mainly resulted from the different energy transfer rates via the intersublattice exchange coupling and has been well simulated by considering the Elliott-Yafet type spin-flip scattering theory and the 4-Temperature model. Moreover, we observed that the second-stage decay time is strongly dependent on the external magnetic field, which is analyzed theoretically and suggests an origin of ultrafast giant magnetic cooling effect via the modulation of lattice-spin coupling. These studies are quite helpful for achieving the efficient manipulation of ultrafast magnetization behaviors.