首页|Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets

Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets

扫码查看
? 2021Herein, the effect of electrodeposition time on the super-capacitive performance of three-dimensional (3D) MnO2/g-C3N4 heterostructured electrodes was investigated. MnO2 nanoparticles were electrodeposited on the g-C3N4 nanosheets drop-casted on the Ni foam substrate. The microstructural analysis, carried out by FE-SEM and TEM, confirmed the homogeneous distribution of MnO2 nanoparticles on g-C3N4 nano-sheet layers. The electrochemical capacitive performances of the MnO2/g-C3N4 electrodes were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge tests, and electrochemical impedance spectra (EIS). The obtained results suggested that the supercapacitor (SC) performance of all prepared g-C3N4/MnO2 composite electrodes is higher than pure MnO2 and pure g-C3N4 electrodes. The effect of electrochemical deposition time on the electrochemical performances of the fabricated electrodes was investigated as well. The specific capacitance of synthesized g-C3N4/MnO2 electrodes was measured as 87.6, 67, and 49.5 Fg-1 for 1, 2, and 3 min deposition time respectively at the current density of 0.5 Ag-1, indicating the electrode obtained with shorter deposition time delivers maximum specific capacity. Therefore, this deposition time has been validated as the optimum time for electrochemical energy storage application.

ElectrodepositionG-C3N4MnO2NanocompositeSuper-capacitive performance

Soltani H.、Bahiraei H.、Ghasemi S.

展开 >

Department of Physics Faculty of Science Malayer University

Sharif Energy Water and Environment Institute Sharif University of Technology

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.904
  • 14
  • 31