首页|The influence of advanced hot isostatic pressing on phase transformations, mechanical properties of Ti-34Nb-13Ta-5Zr-0.2O alloy manufactured by In-situ alloying via selective laser melting

The influence of advanced hot isostatic pressing on phase transformations, mechanical properties of Ti-34Nb-13Ta-5Zr-0.2O alloy manufactured by In-situ alloying via selective laser melting

扫码查看
? 2022 Elsevier B.V.In this paper, advanced hot isostatic pressing (HIP) subjected to high and intermediate cooling rate (HCR & ICR) were exploited to close keyholes and tune the microstructure of SLMed Ti-34 Nb-13Ta-5Zr-0.2 O alloys (TNT5Zr-0.2 O, wt%). XRD analysis along with SEM and TEM micrographs reveal single beta phase in grain matrix of as-fabricated TNT5Zr-0.2 O (TNT5Zr-0.2 O-AF), TNT5Zr-0.2 O-HCR, TNT5Zr-0.2 O-ICR alloys. Additionally, high-angle annular dark-field (HAADF) micrographs show discrete large Ti-rich α grain boundary precipitates in TNT5Zr-0.2 O-ICR alloy. Tensile properties show that TNT5Zr-0.2 O-AF alloy possessed high UTS of 975 ± 12 MPa, and elongation of 4.9% ± 0.3%; the TNT5Zr-0.2 O-ICR alloy obtained slightly higher UTS (1036 ± 26 MPa) and lower elongation (3.0% ± 0.3%). S-N curves demonstrate fatigue limit of TNT5Zr-0.2 O-ICR alloy (150 MPa) is slightly higher than the counterpart of TNT5Zr-0.2 O-AF alloy (130 MPa), and slip-band cracking phenomenon was observed in both alloys. Advanced HIP subjected to intermediate cooling rate functions well to close SLM-processed keyholes but the resistance to fatigue is not markedly enhanced; the addition of proper amount oxygen interstitial solutes in TNTZ-O alloy is regarded as an inexpensive, effective strengthening technique for load-bearing biomedical applications.

Fatigue propertiesHot isostatic pressingPhase transformationsSelective laser meltingStrength-to-modulus ratioβ Ti alloy

Kong W.、Wang F.、Attallah M.M.、Francis E.M.、Shi Q.、Kuang M.、Cox S.C.

展开 >

School of Materials and Metallurgy University of Birmingham

Manchester Materials Science Centre The University of Manchester

Guangdong Institute of New Materials Guangdong Academy of Science

School of Chemical Engineering University of Birmingham

展开 >

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.903
  • 2
  • 38