首页|Thermal Defect Engineering of Precious Group Metal-Organic Frameworks: A Case Study on Ru/Rh-HKUST-1 Analogues

Thermal Defect Engineering of Precious Group Metal-Organic Frameworks: A Case Study on Ru/Rh-HKUST-1 Analogues

扫码查看
A methodology is introduced for controlled postsynthetic thermal defect engineering (TDE) of precious group metal-organic frameworks (PGM-MOFs). The case study is based on the Ru/Rh analogues of the archetypical structure [Cu-3(BTC)(2)] (HKUST-1; BTC = 1,3,5-benzenetricarboxylate). Quantitative monitoring of the TDE process and extensive characterization of the samples employing a complementary set of analytical and spectroscopic techniques reveal that the compositionally very complex TDE-MOF materials result from the elimination and/or fragmentation of ancillary ligands and/or linkers. TDE involves the preferential secession of acetate ligands, intrinsically introduced via coordination modulation during synthesis, and the gradual decarboxylation of ligator sites of the framework linker BTC. Both processes lead to modified Ru/Rh paddlewheel nodes. These nodes exhibit a lowered average oxidation state and more accessible open metal centers, as deduced from surface-ligand IR spectroscopy using CO as a probe and supported by density functional theory (DFT)-based computations. The monometallic and the mixed-metal PGM-MOFs systematically differ in their TDE properties and, in particular in the hydride generation ability (HGA). This latter property is an important indicator for the catalytic activity of PGM-MOFs, as demonstrated by the ethylene dimerization reaction to 1-butene.

metal-organic frameworkHKUST-1Ru-BTCRh-BTCprecious metalthermal defect engineeringethylene dimerizationsolid-gas interactions

Heinz, Werner R.、Agirrezabal-Telleria, Iker、Junk, Raphael、Berger, Jan、Wang, Junjun、Sharapa, Dmitry, I、Gil-Calvo, Miryam、Luz, Ignacio、Soukri, Mustapha、Studt, Felix、Wang, Yuemin、Woell, Christof、Bunzen, Hana、Drees, Markus、Fischer, Roland A.

展开 >

Tech Univ Munich TUM, Dept Chem, Chair Inorgan & Met Organ Chem, D-85748 Garching, Germany

Univ Basque Country, Dept Chem & Environm Engn, Engn Sch, UPV EHU, Bilbao 48013, Spain

Karlsruhe Inst Technol KIT, Inst Funct Interfaces IFG, D-76344 Eggenstein Leopoldshafen, Germany

Karlsruhe Inst Technol KIT, Inst Catalysis Res & Technol IKFT, D-76344 Eggenstein Leopoldshafen, Germany

RTI Int, Durham, NC 27709 USA

Univ Augsburg, Inst Phys, Chair Solid State & Mat Chem, D-86159 Augsburg, Germany

展开 >

2020

ACS applied materials & interfaces

ACS applied materials & interfaces

SCI
ISSN:1944-8244
年,卷(期):2020.12(36)
  • 15
  • 67