首页|Cycle-consistent Adversarial Adaptation Network and its application to machine fault diagnosis
Cycle-consistent Adversarial Adaptation Network and its application to machine fault diagnosis
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
? 2021 Elsevier LtdDriven by industrial big data and intelligent manufacturing, deep learning approaches have flourished and yielded impressive achievements in the community of machine fault diagnosis. Nevertheless, current diagnosis models trained on a specific dataset seldom work well on other datasets due to the domain discrepancy. Recently, adversarial domain adaptation-based approaches have become an emerging and compelling tool to address this issue. Nonetheless, existing methods still have a shortcoming since they cannot guarantee sufficient feature similarity between the source domain and the target domain after adaptation, resulting in unguaranteed performance. To this end, a Cycle-consistent Adversarial Adaptation Network (CAAN) is advanced to realize more effective fault diagnosis of machinery. In CAAN, specifically, an adversarial game formed by the feature extractor and the domain discriminator is constructed to induce transferable feature learning. Meanwhile, the feature translators and discriminators between source and target domains are further designed to build a more comprehensive cycle-consistent generative adversarial constrain, which can more reliably ensure domain-invariant and class-separate characteristics of learned features. Extensive experiments constructed on three datasets from different mechanical systems demonstrate the effectiveness and superiority of CAAN.
Deep learningDomain adaptationFault diagnosisGenerative adversarial learningMachine
Jiao J.、Lin J.、Zhao M.、Liang K.、Ding C.
展开 >
School of Reliability and Systems Engineering Beihang University
School of Mechanical Engineering Xi'an Jiaotong University