首页|Highly efficient photocatalytic degradation of hazardous industrial and pharmaceutical pollutants using gadolinium doped BiFeO3 nanoparticles
Highly efficient photocatalytic degradation of hazardous industrial and pharmaceutical pollutants using gadolinium doped BiFeO3 nanoparticles
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
This investigation highlights the synthesis of an efficient photocatalyst, 10% gadolinium (Gd) doped BiFeO3 (BGFO) nanoparticles, via a facile hydrothermal technique at a lower reaction temperature of 160 °C and its effective application towards the degradation of industrial effluents, such as rhodamine B (RhB), methylene blue (MB) and pharmaceutical pollutants such as ciprofloxacin (CIP), levofloxacin (LFX) under solar irradiation. The successful fabrication of the photocatalyst was confirmed by the Rietveld refined powder X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses. The high resolution transmission electron microscope imaging demonstrated the formation of nanoparticles with excellent morphology and very good crystallinity. The optical characterizations revealed a reduction in the optical band gap from 1.95 to 1.18 eV, as well as effective suppression of electron-hole pair recombination in the BGFO sample. Notably, the photocatalyst BGFO demonstrated 96% and 97% degradation of RhB and MB within 240 and 180 min of solar irradiation, respectively. Moreover, the photodegradation of colorless organic contaminants CIP and LFX was also examined to evaluate the photosensitization properties. Interestingly, about 80% and 79% degradation of CIP and LFX was obtained within 240 min of solar irradiation. The enhanced photocatalytic activities of BGFO could be attributed to the excellent morphology, good crystallinity, increased optical absorption, and effective separation of the photogenerated charge carriers. Additionally, based on the band structures, a plausible mechanism was proposed to comprehend the rationale behind the influential photocatalytic performance of the synthesized nanoparticles to explore their potential towards the future of wastewater treatment on an industrial scale.
Gadolinium doped BiFeO3Industrial dyes and pharmaceuticals degradationLow temperature synthesisPhotocatalytic performance
Sharmin F.、Basith M.A.
展开 >
Nanotechnology Research Laboratory Department of Physics Bangladesh University of Engineering and Technology