首页|DNA nanolantern-mediated catalytic hairpin assembly nanoamplifiers for simultaneous detection of multiple microRNAs
DNA nanolantern-mediated catalytic hairpin assembly nanoamplifiers for simultaneous detection of multiple microRNAs
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
Simultaneous detection of multiple microRNAs (miRNAs) with high sensitivity can give accurate and reliable information for clinical applications. By uniformly anchoring hairpin probes on the surface of DNA nanolantern, a three-dimensional DNA nanostructure contains abundant and adjustable modification sites, highly integrated DNA nanoprobes were designed and developed as catalytic hairpin assembly (CHA)-based signal amplifiers for enzyme-free signal amplification detection of target miRNAs. The nanolantern-based CHA (NLC) amplifiers, which were facilely prepared via a simple "one-pot" annealing method, showed enhanced biostability, improved cell internalization efficiency, accelerated CHA reaction kinetics, and increased signal amplification capability compared to the single-stranded DNA hairpin probes used in traditional CHA reaction. By co-assembling multiple hairpin probes on a DNA nanolantern surface, as-prepared NLC amplifiers were demonstrated to work well for highly sensitive and specific imaging, expression level fluctuation analysis of two miRNAs in living cells, and miRNAs-guided tumor imaging in living mice. The proposed DNA nanolantern-based nanoamplifier strategy might provide a feasible way to promote the cellular and in vivo applications of nucleic acid probes.