首页|Significantly enhanced antifouling and separation capabilities of PVDF membrane by synergy of semi-interpenetrating polymer and TiO2 gel nanoparticles
Significantly enhanced antifouling and separation capabilities of PVDF membrane by synergy of semi-interpenetrating polymer and TiO2 gel nanoparticles
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
? 2021 The Korean Society of Industrial and Engineering ChemistryPVDF membrane has strong hydrophobicity and low anti-pollution performance, greatly limiting its practical application. These drawbacks have been successfully overcome by designing and then preparing a membrane with a semi-interpenetrating polymer (semi-IPN) of PVDF/poly(acrylic acid) (PAA) as the membrane matrix, TiO2 nanoparticles as functional components and F127 as pore-forming agent. The semi-IPN was prepared by copolymerizing acrylic acid with N,N methyl acrylamide in the presence of PVDF, and the TiO2 gel nanoparticles were in situ formed in the membrane-forming process. The properties of the composite membrane were significantly affected by the semi-IPN, F127 and TiO2. By adjusting the membrane structure with the semi-IPN, F127 and TiO2 nanoparticles, we prepared a composite membrane with a water contact angle of 40°, a BSA rejection ratio of 87.5% and a water flux of 802.5 L/m2/h/bar. After a simple UV irradiation, the water flux of this composite membrane rose to 1030 L/m2/h/bar, without any rejection decline. The membrane contaminated by humic acid could recover the water flux up to above 95.3% of its original value by a single UV irradiation, showing a very good antifouling performance. In addition, the composite membrane also exhibited a very strong pollution resistance and separation performance for bovine serum albumin and oil-water emulsion. All in all, based on the synergy of the semi-IPN and the evenly dispersed TiO2 nanoparticles, the prepared composite membrane exhibited excellent comprehensive properties and demonstrated a great potential for various separation applications.
Antifouling abilityPVDF membranesemi-IPNSeparationTiO2 gel NPs
Chen X.、Wang S.、Dong H.、Zhai X.、Shi X.、Wang J.、Ma R.、Zhang W.、Ma Y.
展开 >
State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University
Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University