首页|Long-term structural stability and excellent mechanical properties of CoCrNi system medium entropy alloys

Long-term structural stability and excellent mechanical properties of CoCrNi system medium entropy alloys

扫码查看
? 2022 Elsevier B.V.CoCrNi medium entropy alloys (MEAs) are promising candidates for high- temperature application, but their structural stability and mechanical properties during long-term service are still an open question. This work comprehensively investigated the microstructure and mechanical properties at both room and high temperatures of CoCrNi MEAs after being aged for 500 h at 850 °C. It has been shown that the long-term aged CoCrNi MEA has held a single γ phase, a nanoparticulate and discontinuous block γ′ phase, and η-Ni3(Ti,Ta) phase in acicular Widmanst?tten, cellular and rod-like shapes with the addition of Al, Ti, and Ta. Long-term aged CoCrNi MEAs hold same levels (or sometimes slightly weaker levels) of room- and high-temperature strengths as those MEAs under the standard heat treatment. Specifically, CoCrNi MEA with 2%Al, 2%Ti, and 1%Ta presents an ultimate strength of 1012 MPa at room temperature and a yield strength of 695 MPa at 700 °C. Surprisingly, all of the relevant long-term aged MEAs exhibit superior plasticity to that under standard heat treatment. The anomalous mechanical properties are firstly attributed to the γ' phase precipitation. Next, η phase plays an important role in strengthening, improving or at least harmless plasticizing effect since the η phase has the preferential orientation relationship of [011]γ//[2110]η, {111}γ//{0001}η with the γ matrix. It has been confirmed that the strengthening mechanisms are ascribed to the dislocation accumulation and proliferation, formation of stacking faults and nanotwinning in γ, γ' and η phase induced by the precipitation of γ′ and η phase.

CoCrNi medium entropy alloyMechanical propertiesStructural stabilityγ′ phaseη phase

An N.、Sun Y.N.、Gao L.、Wu Y.D.、Hui X.D.、Xue J.N.、Li Z.R.

展开 >

State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing

Materials Research Institute Beijing Beiye Functional Materials Corporation

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.914
  • 3
  • 46