首页|Hydrothermal synthesis of MWCNT/Ni-Mn-S composite derived from bimetallic MOF for high-performance electrochemical energy storage

Hydrothermal synthesis of MWCNT/Ni-Mn-S composite derived from bimetallic MOF for high-performance electrochemical energy storage

扫码查看
? 2022Multi-walled carbon nanotube (MWCNT)/Ni-Mn-S composites are derived from MWCNT/Ni/Mn bimetallic metal-organic framework (MOF) for supercapacitor electrodes. Electroconductive MWCNT is introduced into Ni-Mn-S to form a three-dimensional interconnected structure due to the covalent interaction between Ni atoms and C atoms. During energy storage, MWCNT serves as miniature current collector to shorten pathway of electron collection and transmission. In addition, S2- etching agent with Kirkendall effect makes edges and surfaces of the resulted sulfide structures rougher provide more active sites and improves electrochemical performance compared with precursors. By finely adjusting Ni/Mn molar ratio, the prepared MWCNT/Ni-Mn-S composite achieves excellent properties. As-prepared MWCNT/Ni-Mn-S(3:2) exhibits high specific capacitance of 1041 mAh g?1 at 1 A g?1 and good cyclic stability. The capacitance retention reaches 83.3% after 10,000 cycles. The assembled MWCNT/Ni-Mn-S(3:2)//AC hybrid supercapacitor (HSC) also shows high energy density of 25.33 Wh Kg?1 at power density of 829 W Kg?1 and outstanding cycling stability (93.3% after 20,000 cycles), which illustrates MWCNT/Ni-Mn-S(3:2) has important potential in supercapacitor.

Metal-organic frameworksMulti-walled carbon nanotubesSupercapacitorsTransition metal sulfides

Hao Y.、Guo H.、Yang F.、Zhang J.、Wu N.、Wang M.、Li C.、Yang W.

展开 >

Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technolog

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.911
  • 12
  • 88