首页|A universal high-efficiency cooling structure for high-power integrated circuits
A universal high-efficiency cooling structure for high-power integrated circuits
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
Nowadays, the growing number of electronic components in integrated circuit(IC) chips require higher cooling efficiency. Here we propose a universal efficient cooling structure based on Micro-Channel Heat Sink (MCHS), which can be applied to heat dissipation of IC chips with uniform and non-uniform heat fluxes. When using GFSMs (Gradually-Higher Fins Spilt-Flow Microstructures) MCHS to cool an IC chip with a uniform heat flux of 100 W/cm~2, the thermal resistance and MATD (mean absolute temperature difference) of regular MCHS can be reduced by 57% and 77%. At the same time, the GFSMs MCHS can reduce the thermal resistance to less than 0.28 K/W with only 1/4 of the pressure drop of the regular MCHS, and the thermal resistance can be reduced to below 0.15 K/W with a pump power of 0.04 W. In addition, TTSV (Thermal Through Silicon Via) is combined with a split-flow microstructure to form a three-dimensional heat dissipation structure (3D-HDS). When using 3D-HDS MCHS to cool a chip containing a 1250 W/cm~2 heat flux hotspot, simulations show that the thermal resistance and MATD decreased by more than 40% compared to regular MCHS. The cooling structure will have broad application prospects in the field of high-power integrated circuits and electronic cooling.
Institute of New Energy Materials and Devices of Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology