首页|Torsional vibrations in heavy-truck powertrains with flywheel attached centrifugal pendulum vibration absorbers
Torsional vibrations in heavy-truck powertrains with flywheel attached centrifugal pendulum vibration absorbers
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
A nonlinear centrifugal pendulum vibration absorber (CPVA) with normal-force dependant friction loss is investigated in a torsional model of a downspeeded powertrain of a heavy-truck. The engine model includes gas-pressure excitation and the existing pendulum model is extended to include a continuous formulation of end-stops at the end of the pendulum-path. Furthermore, the friction loss of the pendulum is experimentally determined. A pendulum-path parameter-study in the complete powertrain model is conducted to consider the effects of the system dynamics on the CPVA. It is shown that the performance of the CPVA is affected by the powertrain system-dynamics and thus important to consider in the design of the CPVA. Downspeeding of the engine by appropriate gearing of the driveline is a measure to decrease the CO2 emissions. However, downspeeding increases the torsional vibration and noise of the powertrain with conventional torsional vibration reduction methods. The CPVA can be used to reduce the torsional vibration and thus facilitate to reach environmental goals.