首页|3D pose estimation and future motion prediction from 2D images
3D pose estimation and future motion prediction from 2D images
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
This paper considers to jointly tackle the highly correlated tasks of estimating 3D human body poses and predicting future 3D motions from RGB image sequences. Based on Lie algebra pose representation, a novel self-projection mechanism is proposed that naturally preserves human motion kinematics. This is further facilitated by a sequence-to-sequence multi-task architecture based on an encoder-decoder topol-ogy, which enables us to tap into the common ground shared by both tasks. Finally, a global refinement module is proposed to boost the performance of our framework. The effectiveness of our approach, called PoseMoNet, is demonstrated by ablation tests and empirical evaluations on Human3.6M and HumanEva-I benchmark, where competitive performance is obtained comparing to the state-of-the-arts.(c) 2021 Elsevier Ltd. All rights reserved.