首页|High-sensitivity and temperature-controlled switching methanol sensor prepared based on the dual catalysis of copper particles
High-sensitivity and temperature-controlled switching methanol sensor prepared based on the dual catalysis of copper particles
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
In this work, based on the dual catalytic properties of copper (Cu) particles for methanol oxidation and persulfate initiated radical polymerization, a temperature-controlled catalytic electrode, defined the PNIPAM-Cu@CP, was constructed by electrodepositing Cu particles on a carbon paper electrode and triggering the polymerization of the temperature-sensitive polymer N-isopropylacrylamide (PNIPAM) on the surface of the electrode, which is expected to be applicated in the micro-direct methanol fuel cell (DMAC) for detection of methanol crossover and also has temperature recognition and high-temperature self-protection functions. Cu particles and PNIPAM were characterized by X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) for their specific structure and morphology. The cyclic voltammetry (CV) results showed the proposed electrode as a temperature-controlled switch-like methanol sensor, has a wide linear range (1-300 mM and 300-1200 mM), excellent sensitivity (72.8 mu A cm(-2) mM(-1) and 11.5 mu A cm(-2) mM(-1)) and a low detection limit of 0.3 mM for methanol. In addition, the sensor also has excellent selectivity and temperature-triggered switchable electrocatalytic activity. The efficient and simple preparation method of the electrode is expected to be used in the development of a methanol sensor for real-time methanol detection in micro-DMAC.