首页|Achieving high strength-ductility synergy in dilute Mg-Al-Ca alloy by trace Ce addition

Achieving high strength-ductility synergy in dilute Mg-Al-Ca alloy by trace Ce addition

扫码查看
? 2022 Elsevier B.V.In this work, the trace Ce atoms have been added into the low-alloyed Mg-Al-Ca matrix, and the microstructure and mechanical properties have been investigated. For the Mg-Al-Ca ternary alloy, the tensile yield strength (TYS) would be decreased from ~ 321 MPa at 260 °C (extrusion temperature) to ~ 294 MPa at 290 °C. In contrast, the Mg-Al-Ca-Ce alloy can still exhibit the high YS of ~ 350 MPa and elongation of ~ 12.1% at higher extrusion temperature of 290 °C. Microstructure characterization shows that the Ce addition can effectively induce the solute segregations along both dislocations and grain boundaries in Mg-Al-Ca-Ce alloy, which thus leads to the finer grain size of 0.7 ~ 0.8 μm at a wide range of extrusion temperature. Formation of subgrain with strong texture, residual dislocations due to segregation and profuse nano-precipitations can together contribute to the high yield strength of Mg-Al-Ca-Ce alloy. More importantly, the trace Ce atoms can promote the activation of non-basal dislocations in Mg matrix and also the weakened texture in DRXed grains. As a result, the ductility is also simultaneously improved by the trace addition of Ce atom into Mg-Al-Ca based alloy. The relevant results can shed light on designing the new high strength and low-alloyed Mg alloys.

Mechanical propertySolute segregationUltra-fined grainsWrought Mg alloy

Fu T.、Sun X.、Ge C.、Xie D.、Li J.、Pan H.、Qin G.

展开 >

Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) College of Materials Science and Engineering Northeastern University

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.917
  • 3
  • 33