Computational Materials Science2022,Vol.20116.DOI:10.1016/j.commatsci.2021.110916

Machine learning predictions of superalloy microstructure

Taylor, Patrick L. Conduit, Gareth
Computational Materials Science2022,Vol.20116.DOI:10.1016/j.commatsci.2021.110916

Machine learning predictions of superalloy microstructure

Taylor, Patrick L. 1Conduit, Gareth1
扫码查看

作者信息

  • 1. Univ Cambridge
  • 折叠

Abstract

Gaussian process regression machine learning with a physically-informed kernel is used to model the phase compositions of nickel-base superalloys. The model delivers good predictions for laboratory and commercial superalloys, with R-2 > 0.8 for all but two components of each of the gamma and gamma' phases, and R-2 = 0.924 (RMSE = 0.063) for the gamma' fraction. For four benchmark SX-series alloys the methodology predicts the gamma' phase composition with RMSE = 0.006 and the fraction with RMSE = 0.020, superior to the 0.007 and 0.021 respectively from CALPHAD. Furthermore, unlike CALPHAD Gaussian process regression quantifies the uncertainty in predictions, and can be retrained as new data becomes available.

Key words

Superalloys/Machine learning/Gaussian process regression/Phase composition/Microstructure/CALPHAD/NICKEL-BASE SUPERALLOY/SINGLE-CRYSTAL SUPERALLOYS/HIGH-TEMPERATURE CREEP/STACKING-FAULT ENERGY/RUPTURE LIFE/MECHANICAL-PROPERTIES/PHASE COMPOSITIONS/HEAT-TREATMENTS/GAMMA-PHASE/BEHAVIOR

引用本文复制引用

出版年

2022
Computational Materials Science

Computational Materials Science

EISCI
ISSN:0927-0256
被引量2
参考文献量97
段落导航相关论文