首页|Biharmonic maps and biharmonic submanifolds with small curvature integral

Biharmonic maps and biharmonic submanifolds with small curvature integral

扫码查看
In this article, we study biharmonic maps and biharmonic submanifolds with small curvature integral. Let phi : (M-n, g) -> (N-m, h) be a biharmonic map from a complete noncompact Riemannian manifold (M-n, g) into a Riemannian manifold (N-m, h) satisfying that the L-2-norm of the tension field of the map is finite. If the domain manifold of the map satisfies a Sobolev inequality and the L-n/2-norm of the sectional curvature on the image phi(M) is sufficiently small, then we are able to prove the harmonicity of the biharmonic map. It turns out that the fundamental tone of M is sufficiently large, then such a biharmonic map phi must be harmonic. In case where the map is an isometric immersion, we prove that if M satisfies a Sobolev inequality, then M must be minimal under the assumption that the L-n/2-norm of the Ricci curvature on M is sufficiently small. Moreover it is shown that if the fundamental tone of a biharmonic submanifold is sufficiently big, then it is minimal. (C) 2022 Elsevier B.V. All rights reserved.

Biharmonic mapsBiharmonic submanifoldsGeneralized Chen's conjectureEinstein manifoldsFundamental toneLocally conformally flatCHENS CONJECTUREHYPERSURFACESMANIFOLD

Seo, Keomkyo、Yun, Gabjin

展开 >

Sookmyung Womens Univ

Myongji Univ

2022

Journal of geometry and physics

Journal of geometry and physics

SCI
ISSN:0393-0440
年,卷(期):2022.178
  • 30