首页|Non-extensive thermodynamic entropy to predict the dynamics behavior of COVID-19

Non-extensive thermodynamic entropy to predict the dynamics behavior of COVID-19

扫码查看
? 2021 Elsevier B.V.The current world observations in COVID-19 are hardly tractable as a whole, making situations of information to be incompleteness. In pandemic era, mathematical modeling helps epidemiological scientists to take informing decisions about pandemic planning and predict the disease behavior in the future. In this work, we proposed a non-extensive entropy-based model on the thermodynamic approach for predicting the dynamics of COVID-19 disease. To do so, the epidemic details were considered into a single and time-dependent coefficients model. Their four constraints, including the existence of a maximum point were determined analytically. The model was worked out to give a log-normal distribution for the spread rate using the Tsallis entropy. The width of the distribution function was characterized by maximizing the rate of entropy production. The model predicted the number of daily cases and daily deaths with a fairly good agreement with the World Health Organization (WHO) reported data for world-wide, Iran and China over 2019-2020-time span. The proposed model in this work can be further calibrated to fit on different complex distribution COVID-19 data over different range of times.

Covid-19EntropyTsallis

Ghanbari A.、Khordad R.、Ghaderi-Zefrehei M.

展开 >

Department of Physics College of Science Yasouj University

Department of Animal Genetics Yasouj University

2022

Physica

Physica

ISSN:0921-4526
年,卷(期):2022.624
  • 49