首页|Fischer-Trospch to olefins over hydrophobic FeMnOx@SiO2 catalysts: The effect of SiO2 shell content
Fischer-Trospch to olefins over hydrophobic FeMnOx@SiO2 catalysts: The effect of SiO2 shell content
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
Selective conversion of syngas to olefins has aroused extensive attention while some challenges still existed such as high CO2 selectivity. Herein, a series of hydrophobic FeMnOx@SiO2-y-(CH3)(3) (y represents SiO2 weight percent of the catalyst) catalysts with various SiO2 shell content were synthesized for Fischer-Tropsch to olefins (FTO). During the activation process, high hydrophobic SiO2-coating content catalysts suppressed the reduction/carburization of iron species to iron carbide. During FTO reaction, iron carbide of low hydrophobic SiO2-coating content catalysts was re-oxidized while it was stabilized for high hydrophobic SiO2-coating content catalysts. The trade-off among CO2, CH4 selectivity and SiO2-coating content was reflected as an increasing trend relationship, while olefins selectivity exhibited a decreasing trend. Additionally, a desirable hydrophobic SiO2-coating (8.2 wt %) catalyst apparently suppressed CO2 formation (4.7 C%) with high olefins selectivity (54.6 C%) at CO conversion of 50.7%. This study provides an efficient approach to inhibit CO2 formation of Fe-based FTO catalyst.