首页|Nanoneedle-Assembled Copper/Cobalt sulfides on nickel foam as an enhanced 3D hierarchical catalyst to activate monopersulfate for Rhodamine b degradation

Nanoneedle-Assembled Copper/Cobalt sulfides on nickel foam as an enhanced 3D hierarchical catalyst to activate monopersulfate for Rhodamine b degradation

扫码查看
While metal oxides are conventionally proposed for activating monopersulfate (MPS) to degrade refractory contaminants, metal sulfides have recently gained increased attention for MPS activation because these sulfides exhibit more reactive redox characteristics to enhance the catalytic activation of MPS. The present study attempts to develop a novel material comprised of metal sulfides with 3D hierarchical nanostructures to activate MPS. Specifically, a 3D hierarchically structured catalyst was fabricated by growing CuCo-layered double hydroxide (LDH) on nickel foam (NF), followed by direct sulfurization, affording Cu/CoS@NF (CCSNF). CCSNF could exhibit a unique morphology of floral bunches comprised of nano-needles, residing on the NF surfaces. Compared with its precursor, CuCo-LDH@NF, oxide analogue, and CuCo2O4@NF, CCSNF possessed superior physical and chemical properties, including larger surface area and pore volume, higher current density, and lower charge transfer resistance. These features render CCSNF a much more effective catalyst than CuCo-LDH@NF and CuCo2O4@NF for activating MPS to degrade Rhodamine B (RB). In particular, RB degradation by CCSNF-activated MPS required an activation energy only 26.8 kJ/mol, which is much lower than the reported values. The activation mechanism and degradation pathway of RB degradation by CCSNF-activated MPS were investigated and validated through experimental evidences and density function theory calculations. (c) 2021 Published by Elsevier Inc.

Cobalt sulfideOxoneRhodamine BCopper sulfideNickel foamLDHADVANCED OXIDATION PROCESSESHETEROGENEOUS CATALYSTBISPHENOL-AORANGE IIPEROXYMONOSULFATEOXONESULFATEWATERGENERATIONDYE

Chen, Hsing-Hua、Park, Young-Kwon、Kwon, Eilhann、Tsang, Yiu Fai、Thanh, Bui Xuan、Khiem, Ta Cong、You, Siming、Hu, Chechia、Lin, Kun-Yi Andrew

展开 >

Natl Chung Hsing Univ

Univ Seoul

Sejong Univ

Educ Univ Hong Kong

Ho Chi Minh City Univ Technol

Univ Glasgow

Natl Taiwan Univ Sci & Technol

展开 >

2022

Journal of Colloid and Interface Science

Journal of Colloid and Interface Science

EISCI
ISSN:0021-9797
年,卷(期):2022.613
  • 6
  • 51