首页|Catalytically active nano-porous cobalt-palladium alloys

Catalytically active nano-porous cobalt-palladium alloys

扫码查看
The potential advantages of nano-alloys and particularly, nano-porous alloys, place them at the “spotlight” of heterogeneous catalysis. Nevertheless, controlling the precise compositions of these materials is still a synthetic challenge. Previous research introduced the fabrication of metals and alloys with a high nano-scale porosity and controllable compositions, via a hydrogen-mediated chemical reduction process of metal complex salts. We have used this procedure to obtain two magnetic nano-porous Co-Pd alloys, pure porous palladium and pure porous cobalt. Single crystal X-ray diffraction studies enabled structural determination of the two Co-Pd bi-complex salts that were used as precursors for these alloys. Powder X-ray diffraction studies determined the crystalline phases of the alloys and indicated the nanometric size of their crystallites. High-resolution scanning electron microscopy indicated that these alloys assemble as highly porous clusters of interconnected nano-crystallites. It also indicated that each alloy cluster preserves the micrometric morphologies of its salt precursor. Energy dispersive X-ray spectroscopy showed that the alloys exhibit uniform composition down to the micro-level, which preserved the Co/Pd ratio within the salts. Focused ion beam tomography enabled 3D structural representation of the alloys and metals. Geometrical analysis of the 3D reconstructed data determined 90% porosity and a specific surface area of ~100 m2/g for the alloys. In addition, the alloys showed improved catalytic activity in the semi-hydrogenation of phenylacetylene, compared to the pure metals and commercial Pd/C. Moreover, their magnetic properties enabled facile recovery at the end of the reaction. The yield for styrene in this reaction was increased using “design of experiments” (DOE), a method for optimization of reaction conditions. Furthermore, our experiments implied that a highly porous structure significantly improves the selectivity of styrene in the reaction. These results demonstrated the advantage of fabricating nano-porous alloys with uniform compositions that may exhibit special properties and serve as new and efficient catalysts.

CatalysisGas-solid reactionsScanning electron microscopy (SEM)Transition metal alloys and compoundsVacancy formationX-ray diffraction

Avisar S.、Shner Y.、Abu-Reziq R.、Bino A.、Popov I.

展开 >

Institute of Chemistry The Hebrew University of Jerusalem

The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.891
  • 5
  • 36