首页|Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband
Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
Conventional metasurfaces cannot adjust the electromagnetic responses once the structures are determined. In this paper, we numerically demonstrate a thermally switchable bifunctional metasurface based on the phase change material vanadium dioxide (VO2) applied to the mid-infrared band. The dual-layer ring resonator consists of an Ag split ring and a VO2 ring, which can achieve ultra-broadband polarization conversion and perfect absorption through the insulator-to-metal phase transition of VO2. When VO2 is in the insulating state, the designed metasurface acts as polarization converter with polarization conversion ratio of over 95% in the wavelength range of 2500 nm to 3500 nm. When VO2 is in the metallic state, the metasurface behaves as perfect absorber with over 90% absorptivity in the region from 2900 nm to 3700 nm. And the operating bandwidths of the two functions are highly overlapped. The ultra-broadband polarization conversion properties are mainly derived from the closed multiple electric and magnetic resonances. Single localized magnetic resonance results in a flat absorption spectrum. The proposed metasurface may provide new ideas for the design of tunable integrated optical devices.