首页|Effect of Cu/Mg-containing intermetallics on the mechanical properties of the as-cast HVDC AlSiMgMnCu alloys by SBFSEM at nano-scale

Effect of Cu/Mg-containing intermetallics on the mechanical properties of the as-cast HVDC AlSiMgMnCu alloys by SBFSEM at nano-scale

扫码查看
? 2022 Elsevier B.V.In this study, AlSiMgMnCu alloys with different Cu and Mg contents were fabricated by high vacuum die casting (HVDC) technique. The phase formation and their microstructure evolution are quantitatively studied by serial block-face scanning electron microscopy (SBFSEM) at nano-scale in three-dimensions. Through analyzing their three-dimensional (3D) microstructure, effects of the spatial distribution, volume fractions and morphology of the intermetallic phases on the alloy's mechanical properties are comprehensively discussed. It is found that, with higher Cu content and lower Mg content, the nucleation and growth of θ-Al2Cu phase would have advantage over Q-Al5Cu2Mg8Si6 phase. In contrast, decreasing Cu/Mg ratio by increasing Mg content is in favor of the nucleation and growth of the Q-Al5Cu2Mg8Si6 phase. The uniformly distributed fine θ-Al2Cu phase provides the highest contribution to the strengthening of the HVDC AlSiMgMnCu alloys. For the Cu/Mg ratio to be 3, an as-cast HVDC Al-10Si-0.2Mg-0.5Mn-0.6Cu alloy with optimized ultimate tensile strength, yield strength and elongation of 330 MPa, 162 MPa and 10.2%, respectively, had been produced.

Cu/Mg ratioCu/Mg-containing intermetallicsHigh vacuum die casting (HVDC)Serial block-face scanning electron microscopy (SBFSEM)

Liu F.、Zheng H.、Jiang Y.、Li X.、Zhao H.、Zhong Y.、Chen B.

展开 >

National Engineering Research Center of Near-net Shape Forming for Metallic Materials South China University of Technology

Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education) School of Materials Science and Engineering Tongji University

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.926
  • 4
  • 50