Computational Materials Science2022,Vol.2029.DOI:10.1016/j.commatsci.2021.110987

Identifying structure-property relationships of micro-architectured porous scaffolds through 3D printing and finite element analysis

Yang, Zhangke Niksiar, Pooya Meng, Zhaoxu
Computational Materials Science2022,Vol.2029.DOI:10.1016/j.commatsci.2021.110987

Identifying structure-property relationships of micro-architectured porous scaffolds through 3D printing and finite element analysis

Yang, Zhangke 1Niksiar, Pooya 2Meng, Zhaoxu1
扫码查看

作者信息

  • 1. Clemson Univ
  • 2. The Citadel
  • 折叠

Abstract

This study integrates 3D printing and finite element analysis (FEA) to investigate the effect of micro-architectural characteristics on the mechanical properties of porous scaffolds. The studied characteristics include the thickness of the scaffold walls and the number of domains at the cross-section. We use 3D printing to fabricate scaffolds of deliberately designed microstructures to enable strict architecture control of the scaffolds. The longitudinal compressive properties of different scaffolds are first analyzed through experimental testing. Then, FEA is conducted to investigate the mechanical properties and the deformation mechanisms of the scaffolds. We find that decreasing wall thickness leads to failure mechanism transition from wall compression failure to buckling instability. For scaffolds with different wall thicknesses, the failure mechanisms and the critical loads are evaluated using the theory of thin plate buckling. For the characteristic of the number of domains, both experimental and FEA results show increasing effective stiffness with increasing domains. Interestingly, we find that with the material properties extracted from a single wall scaffold, the computational models tend to overestimate the effective compression modulus of scaffolds with larger numbers of walls or domains than the experimental data. This observation indicates possible size-dependent material properties in 3D printed structs. Our study demonstrates that integrating experiments and computational modeling can provide fundamental insights into the mechanical properties and deformation mechanisms of micro-architectured scaffolds and unveil unique small-scale material behaviors.

Key words

3D printing/Finite element analysis/Micro-architectured scaffolds/Effective compressive modulus/Wall buckling/BIOLOGICAL-MATERIALS/FREEZE/MECHANICS/DESIGN/COMPOSITES/CERAMICS/BEHAVIOR/NACRE/TOUGH

引用本文复制引用

出版年

2022
Computational Materials Science

Computational Materials Science

EISCI
ISSN:0927-0256
被引量5
参考文献量58
段落导航相关论文