首页|Toward tunable microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy
Toward tunable microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
? 2022 Elsevier B.V.Tailoring microstructure and mechanical properties of structural materials to meet application requirements is a long-standing challenge in materials science. Here we have studied the effects of laser energy density (LED) on the microstructure and mechanical properties of single-track CoCrFeMnNi high entropy alloy (HEA) samples fabricated by laser directed energy deposition (LDED). The results indicate that the molten pool size of the single-track HEA samples gradually increases with increasing LED. All of the samples possess a single face-centered cubic (FCC) solid solution structure. The microstructures of the single-track HEA samples are mainly composed of columnar and equiaxed grains, and as the LED increases, their grain size increases while the micro-hardness decreases. Additionally, the relationship among the processing parameters, cooling rate and grain size was investigated via combining the numerical simulation and experimental observations. This work provides mechanistic insights into establishing the processing-structure-property relationships in the additively manufactured HEAs and contributes to achieve LDED of tunable HEA parts with desired microstructure and mechanical performance.
High entropy alloyLaser directed energy depositionLaser energy densityMechanical propertiesMicrostructure