首页|Development and validation of a simple and practical method for differentiating MS from other neuroinflammatory disorders based on lesion distribution on brain MRI
Development and validation of a simple and practical method for differentiating MS from other neuroinflammatory disorders based on lesion distribution on brain MRI
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
There is an unmet need to develop practical methods for differentiating multiple sclerosis (MS) from other neuroinflammatory disorders using standard brain MRI. To develop a practical approach for differentiating MS from neuromyelitis optica spectrum disorder (NMOSD) and MOG antibody-associated disorder (MOGAD) with brain MRI, we first identified lesion locations in the brain that are suggestive of MS-associated demyelination ("MS Lesion Checklist") and compared frequencies of brain lesions in the "MS Lesion Checklist" locations in a development sample of patients (n = 82) with clinically definite MS, NMOSD, and MOGAD. Patients with MS were more likely than patients with non-MS to have lesions in 3 locations only: anterior temporal horn (p < 0.0001), periventricular ("Dawson's finger") (p < 0.0001), and cerebellar hemisphere (p = 0.02). These three lesion locations were used as predictor variables in a multivariable regression model for discriminating MS from non-MS. The model had area under the curve (AUC) of 0.853 (95% confidence interval: 0.76-0.945), sensitivity of 87.1%, and specificity of 72.5%. We then used an independent validation sample with equal representation of MS and NMOSD/MOGAD cases (n = 97) to validate our prediction model. In the validation sample, the model was 76.3% accurate in discriminating MS from non-MS. Our simple method for predicting MS versus NMOSD/ MOGAD only requires a neuroradiologist or clinician to ascertain the presence of lesions in three locations on conventional MRI sequences. It can therefore be readily applied in the real-world setting for training and clinical practice.