首页|α-Phase intermediate for efficient and stable narrow bandgap triple cation perovskite solar cells
α-Phase intermediate for efficient and stable narrow bandgap triple cation perovskite solar cells
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
? 2022 Elsevier B.V.Lead halide perovskite solar cells (PSCs) have attracted intensive attention since their power conversion efficiency (PCE) increased sharply in recent years. Thereinto, triple cation perovskite (TCP) is a popular light absorption layer for PSCs due to its excellent thermal and humidity stability. However, a large amount of MA+ (≥15%) and Br- (≥15%) in TCP makes the bandgap widen drifting from the optimum value. There is some extent of a trade-off between PCE and stability for PSCs, and narrow-bandgap TCP is one of the best choices for light absorption material to achieve an optimum balance between PCE and stability. Herein, we prepared a narrow-bandgap (1.56 eV) high-quality TCP (Cs0.05FA0.86MA0.09Pb(I0.97Br0.03)3) film with an average grain size up to 1208 nm and corresponding PSC with high efficiency of 20.8%. Moreover, the intermediate process of the TCP film crystallization was carefully studied disclosing the critical α-Phase intermediate and corresponding roles of DMSO solvent and MACl additive through quasi-in-situ XRD in the film formation process, and the results may give critical clues to the fabrication of high-quality narrow-bandgap TCP based PSCs.
Dimethyl sulfoxideIntermediateMethylamine chlorideNarrow bandgapTriple cations perovskite solar cell
Du L.、Peng C.、Chen Q.、Tang Y.、Su H.、Zhang W.、Li H.、Wang Q.、Xiang Y.、Tian L.、Lin P.、Zhou S.、Huang Y.
展开 >
Institute of Photovoltaic Southwest Petroleum University