首页|Optimization of electrodeposition nanocrytalline Ni-Fe alloy coatings for the replacement of Ni coatings

Optimization of electrodeposition nanocrytalline Ni-Fe alloy coatings for the replacement of Ni coatings

扫码查看
? 2022 Elsevier B.V.Fabricating nanocrystalline Ni-Fe alloy coatings with excellent brightness and corrosion resistance could reduce the use of Ni and benefit economically. Nanocrystalline Ni-Fe alloy coatings were electrodeposited on steel substrates and the coatings with 34.55% Fe content were achieved at the optimized conditions with the current efficiency high up to 80.30%. The electrodeposition behavior of Ni-Fe coatings was investigated by cyclic voltammetry (CV), chronopotentiometry and chronoamperometry. CV tests illustrate that Ni2+ and Fe2+ are co-electrodeposited to form single phase and the deposition of Ni is inhibited by the presence of Fe2+ while the deposition of Fe is boosted by the Ni2+ according to chronopotentiometry. The nucleation and growth of nanocrystalline Ni-Fe alloy coatings is 3D diffusion-controlled instantaneous nucleation process. Intermetallic compound, namely Ni3Fe phase, was formed according to XRD analysis and TEM analysis, while the mean grain size is 4.79 nm. SEM and AFM images demonstrate that nanocrystalline and compact surface were fabricated and the roughness is lower than 5 nm, better than pure Ni coating. Due to the nanocrystalline and compact surface, the icorr and Rct of nanocrystalline Ni-Fe alloy coating are 0.7544 μA cm?2 and 8560 Ω respectively, indicating that Ni-Fe alloy coating is of good corrosion resistance.

Corrosion resistanceIntermetallic compoundNanocrystallineNi-Fe alloy coatings

Li Y.、Xu C.、Guo W.、Cai X.、An M.、Zhang G.

展开 >

State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology

Hangzhou Oriental Metal Finishing Technology Corporations Ltd

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.903
  • 19
  • 41