首页|Different types of spatial correlation functions for non-ergodic stochastic processes of macroscopic systems

Different types of spatial correlation functions for non-ergodic stochastic processes of macroscopic systems

扫码查看
Abstract Focusing on non-ergodic macroscopic systems, we reconsider the variances δO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \mathcal{O}^2$$\end{document} of time averages O[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}[\mathbf {x}]$$\end{document} of time-series x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {x}$$\end{document}. The total variance δOtot2=δOint2+δOext2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \mathcal{O}^2_{\mathrm {tot}}= \delta \mathcal{O}^2_{\mathrm {int}}+ \delta \mathcal{O}^2_{\mathrm {ext}}$$\end{document} (direct average over all time series) is known to be the sum of an internal variance δOint2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \mathcal{O}^2_{\mathrm {int}}$$\end{document} (fluctuations within the meta-basins) and an external variance δOext2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \mathcal{O}^2_{\mathrm {ext}}$$\end{document} (fluctuations between meta-basins). It is shown that whenever O[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}[\mathbf {x}]$$\end{document} can be expressed as a volume average of a local field Or\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}_{\mathbf{r}}$$\end{document} the three variances can be written as volume averages of correlation functions Ctot(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\mathrm {tot}}(\mathbf{r})$$\end{document}, Cint(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\mathrm {int}}(\mathbf{r})$$\end{document} and Cext(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\mathrm {ext}}(\mathbf{r})$$\end{document} with Ctot(r)=Cint(r)+Cext(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\mathrm {tot}}(\mathbf{r}) = C_{\mathrm {int}}(\mathbf{r}) + C_{\mathrm {ext}}(\mathbf{r})$$\end{do

Wittmer J. P.、Semenov A. N.、Baschnagel J.

展开 >

Université de Strasbourg & CNRS

2022

The European physical journal

The European physical journal

ISSN:1292-8941
年,卷(期):2022.45(8)
  • 1
  • 23