首页|Retinal microaneurysms detection using adversarial pre-training with unlabeled multimodal images

Retinal microaneurysms detection using adversarial pre-training with unlabeled multimodal images

扫码查看
The detection of retinal microaneurysms is crucial for the early detection of important diseases such as diabetic retinopathy. However, the detection of these lesions in retinography, the most widely available retinal imaging modality, remains a very challenging task. This is mainly due to the tiny size and low contrast of the microaneurysms in the images. Consequently, the automated detection of microaneurysms usually relies on extensive ad-hoc processing. In this regard, although microaneurysms can be more easily detected using fluorescein angiography, this alternative imaging modality is invasive and not adequate for regular preventive screening. In this work, we propose a novel deep learning methodology that takes advantage of unlabeled multimodal image pairs for improving the detection of microaneurysms in retinography. In particular, we propose a novel adversarial multimodal pre-training consisting in the prediction of fluorescein angiography from retinography using generative adversarial networks. This pre-training allows learning about the retina and the microaneurysms without any manually annotated data. Additionally, we also propose to approach the microaneurysms detection as a heatmap regression, which allows an efficient detection and precise localization of multiple microaneurysms. To validate and analyze the proposed methodology, we perform an exhaustive experimentation on different public datasets. Additionally, we provide relevant comparisons against different state-of-the-art approaches. The results show a satisfactory performance of the proposal, achieving an Average Precision of 64.90%, 31.36%, and 33.55% in the E-Ophtha, ROC, and DDR public datasets. Overall, the proposed approach outperforms existing deep learning alternatives while providing a more straightforward detection method that can be effectively applied to raw unprocessed retinal images.

Deep learningMedical imagingMultimodal imagingEye fundusGenerative adversarial networksMicroaneurysmsDIABETIC-RETINOPATHYFLUORESCEIN ANGIOGRAMSAUTOMATIC DETECTIONSEGMENTATIONALGORITHMS

Hervella, Alvaro S.、Rouco, Jose、Novo, Jorge、Ortega, Marcos

展开 >

Univ A Coruna

2022

Information Fusion

Information Fusion

EISCI
ISSN:1566-2535
年,卷(期):2022.79
  • 7
  • 51