Neural Networks2022,Vol.15215.DOI:10.1016/j.neunet.2022.04.029

ExSpliNet: An interpretable and expressive spline-based neural network

Fakhoury, Daniele Fakhoury, Emanuele Speleers, Hendrik
Neural Networks2022,Vol.15215.DOI:10.1016/j.neunet.2022.04.029

ExSpliNet: An interpretable and expressive spline-based neural network

Fakhoury, Daniele 1Fakhoury, Emanuele 1Speleers, Hendrik1
扫码查看

作者信息

  • 1. Univ Roma Tor Vergata
  • 折叠

Abstract

In this paper we present ExSpliNet, an interpretable and expressive neural network model. The model combines ideas of Kolmogorov neural networks, ensembles of probabilistic trees, and multivariate B-spline representations. We give a probabilistic interpretation of the model and show its universal approximation properties. We also discuss how it can be efficiently encoded by exploiting B-spline properties. Finally, we test the effectiveness of the proposed model on synthetic approximation problems and classical machine learning benchmark datasets. (C) 2022 Elsevier Ltd. All rights reserved.

Key words

Kolmogorov neural networks/Probabilistic trees/Tensor-product B-splines/MULTILAYER FEEDFORWARD NETWORKS/NUMERICAL IMPLEMENTATION/ERROR-BOUNDS/APPROXIMATION/SUPERPOSITION

引用本文复制引用

出版年

2022
Neural Networks

Neural Networks

EISCI
ISSN:0893-6080
被引量1
参考文献量67
段落导航相关论文