首页|Regenerative matching axial vascularisation of absorbable 3D-printed scaffold for large bone defects: A first in human series

Regenerative matching axial vascularisation of absorbable 3D-printed scaffold for large bone defects: A first in human series

扫码查看
? 2022Background: We describe the first clinical series of a novel bone replacement technique based on regenerative matching axial vascularisation (RMAV). This was used in four cases: a tibial defect after treatment of osteomyelitis; a calvarial defect after trauma and failed titanium cranioplasty; a paediatric tibial defect after neoadjuvant chemotherapy and resection of Ewing sarcoma; and a paediatric mandibular deficiency resulting from congenital hemifacial microsomia. Method: All patients underwent reconstruction with three-dimensional (3D)-printed medical-grade polycaprolactone and tricalcium phosphate (mPCL-TCP) scaffolds wrapped in vascularised free corticoperiosteal flaps. Outcome: Functional volumes of load-sharing regenerate bone have formed in all cases after a moderate duration of follow-up. At 36 cm, case 1 remains the longest segment of load bearing bone ever successfully reconstructed. This technique offers an alternative to existing methods of large volume bone defect reconstruction that may be safe, reliable, and give predictable outcomes in challenging situations. It achieves this by using a bioresorbable scaffold to support and direct the growth of regenerate bone, driven by RMAV. Conclusion: This technique may facilitate the reconstruction of bone defects previously thought unreconstructable, reduce the risk of long-term implant-related complications and achieve these outcomes in a hostile environment. These potential benefits must now be formally tested in prospective clinical trials.

3D printingBone defectMicrosurgeryReconstructionReconstructive surgeryTissue engineering

Castrisos G.、Gonzalez Matheus I.、Sparks D.、Lowe M.、Ward N.、Sehu M.、Wille M.-L.、Phua Y.、Medeiros Savi F.、Hutmacher D.、Wagels M.

展开 >

Department of Plastic Surgery Princess Alexandra Hospital

Department of Orthopaedic Surgery Princess Alexandra Hospital

Southside Clinical Division School of Medicine University of Queensland

Queensland University of Technology Node ARC Training Centre for Multiscale 3D Imaging Modelling

Department of Plastic and Reconstructive Surgery Queensland Children's Hospital

展开 >

2022

Journal of plastic, reconstructive & aesthetic surgery

Journal of plastic, reconstructive & aesthetic surgery

ISSN:1748-6815
年,卷(期):2022.75(7)
  • 8
  • 41