首页|Stability of nonparaxial gap-soliton bullets in waveguide gratings

Stability of nonparaxial gap-soliton bullets in waveguide gratings

扫码查看
We investigate the formation and propagation of gap-soliton bullets in nonlinear periodic waveguides at fre-quencies close to the gap for Bragg reflection beyond the paraxial approximation. Using a multiple-scales analy-sis, we derive a two-dimensional (2D) nonlinear Schrodinger equation with higher-order correction terms that consider the nonparaxial regimes in the slowly-varying envelope approximation. In addition, a fully numerical simulation of the newly derived model equation demonstrates that the mutual balancing between Kerr, dimen-sionality, higher-order dispersions and nonparaxiality allows shape-preserving propagation of gap-soliton bul -lets in a grating waveguide. (c) 2022 Published by Elsevier Ltd.

Gap-soliton bulletsNonparaxial approximation2D nonlinear Schr?dinger equationHigher-order dispersionsSELF-INDUCED TRANSPARENCY3-DIMENSIONAL SPINNING SOLITONSDISPERSIVE DIELECTRIC FIBERSNONLINEAR HELMHOLTZ-EQUATIONGINZBURG-LANDAU EQUATIONSPATIOTEMPORAL SOLITONSOPTICAL PULSESPROPAGATIONMEDIABEAM

Kofane, T. C.、Tabi, C. B.、Otsobo, J. A. Ambassa、Megne, L. Tiam

展开 >

Univ Yaounde I

Botswana Int Univ Sci & Technol

2022

Chaos, Solitons and Fractals

Chaos, Solitons and Fractals

EI
ISSN:0960-0779
年,卷(期):2022.158
  • 3
  • 137