首页|Polar soils exhibit distinct patterns in microbial diversity and dominant phylotypes

Polar soils exhibit distinct patterns in microbial diversity and dominant phylotypes

扫码查看
? 2022 Elsevier LtdThe polar regions, comprising the Antarctic, Arctic and Tibetan Plateau, represent the most extreme environments on Earth. Soils across the polar regions harbor diverse microorganisms, which dominate the biogeochemical cycling. However, polar soil microbial diversity is largely underrepresented, and has not been directly compared with the non-polar regions at a global scale, which hinders our understanding of the potential importance of polar microbial diversity. In this study, we investigated the global microbial diversity and taxonomy by comparing 1114 soils, derived from the Antarctic (203), Arctic (432), Tibetan Plateau (104) and non-polar regions (375) across all continents. Soil microbial diversity was found to increase gradually from the Antarctic < Arctic < Tibetan Plateau and < non-polar regions. Soil microbial diversity dominantly corresponded to mean summer temperature in the polar regions and to soil pH in non-polar regions, respectively. Soil microbial community structure significantly differed across the different biogeographical regions, while the Antarctic exhibited the highest habitat-specificity. Over 26,000 phylotypes were observed across global soils, of which 21.8% were unique to the three poles, and 21.2% were apparently ubiquitous globally. Polar soils were dominated by fewer phylotypes, but individual phylotype showed greater dominance than that in non-polar regions. Our study reveals unique patterns of soil microbial diversity and taxonomic compositions in polar regions, and highlights the importance of environmental stresses in controlling soil microbial community.

AntarcticArcticCommunity structureSoil microbial diversityThree polesTibetan plateau

Ji M.、Kong W.、Jia H.、Zhou T.、Wang Y.、Xue K.、Delgado-Baquerizo M.、Liu X.、Ferrari B.C.、Malard L.、Pearce D.A.、Liang C.、Makhalanyane T.P.、Cowan D.、Zhu Y.-G.

展开 >

State Key Laboratory of Tibetan Plateau Earth System Resources and Environment (TPESRE) Institute of Tibetan Plateau Research Chinese Academy of Sciences (CAS)

CAS Center for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences

University of Chinese Academy of Sciences

Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS)

Anhui Province Key Laboratory of Polar Environment and Global Change School of Earth and Space Sciences University of Science and Technology of China

School of Biotechnology and Biomolecular Sciences UNSW Sydney

Department of Ecology and Evolution University of Lausanne

Faculty of Health and Life Sciences Northumbria University

Institute of Applied Ecology Chinese Academy of Sciences

Centre for Microbial Ecology and Genomics Department of Biochemistry Genetics and Microbiology University of Pretoria

State Key Laboratory of Urban and Reginal Ecology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences

展开 >

2022

Soil Biology & Biochemistry

Soil Biology & Biochemistry

SCI
ISSN:0038-0717
年,卷(期):2022.166
  • 10
  • 56