首页|Optimal Impact Angle Guidance via First-Order Optimization under
Nonconvex Constraints
Optimal Impact Angle Guidance via First-Order Optimization under
Nonconvex Constraints
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
Arxiv
Most of the optimal guidance problems can be formulated as nonconvex
optimization problems, which can be solved indirectly by relaxation,
convexification, or linearization. Although these methods are guaranteed to
converge to the global optimum of the modified problems, the obtained solution
may not guarantee global optimality or even the feasibility of the original
nonconvex problems. In this paper, we propose a computational optimal guidance
approach that directly handles the nonconvex constraints encountered in
formulating the guidance problems. The proposed computational guidance approach
alternately solves the least squares problems and projects the solution onto
nonconvex feasible sets, which rapidly converges to feasible suboptimal
solutions or sometimes to the globally optimal solutions. The proposed
algorithm is verified via a series of numerical simulations on impact angle
guidance problems under state dependent maneuver vector constraints, and it is
demonstrated that the proposed algorithm provides superior guidance performance
than conventional techniques.