查看更多>>摘要:Deep neural networks (DNNs) have been widely used in many artificial intelligence (AI) tasks. However, deploying them brings significant challenges due to the huge cost of memory, energy, and computation. To address these challenges, researchers have developed various model compression techniques such as model quantization and model pruning. Recently, there has been a surge in research on compression methods to achieve model efficiency while retaining performance. Furthermore, more and more works focus on customizing the DNN hardware accelerators to better leverage the model compression techniques. In addition to efficiency, preserving security and privacy is critical for deploying DNNs. However, the vast and diverse body of related works can be overwhelming. This inspires us to conduct a comprehensive survey on recent research toward the goal of high-performance, cost-efficient, and safe deployment of DNNs. Our survey first covers the mainstream model compression techniques, such as model quantization, model pruning, knowledge distillation, and optimizations of nonlinear operations. We then introduce recent advances in designing hardware accelerators that can adapt to efficient model compression approaches. In addition, we discuss how homomorphic encryption can be integrated to secure DNN deployment. Finally, we discuss several issues, such as hardware evaluation, generalization, and integration of various compression approaches. Overall, we aim to provide a big picture of efficient DNNs from algorithm to hardware accelerators and security perspectives.
查看更多>>摘要:Cluster analysis plays an indispensable role in machine learning and data mining. Learning a good data representation is crucial for clustering algorithms. Recently, deep clustering (DC), which can learn clustering-friendly representations using deep neural networks (DNNs), has been broadly applied in a wide range of clustering tasks. Existing surveys for DC mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering. To address this issue, in this article, we provide a comprehensive survey for DC in views of data sources. With different data sources, we systematically distinguish the clustering methods in terms of methodology, prior knowledge, and architecture. Concretely, DC methods are introduced according to four categories, i.e., traditional single-view DC, semi-supervised DC, deep multiview clustering (MVC), and deep transfer clustering. Finally, we discuss the open challenges and potential future opportunities in different fields of DC.
查看更多>>摘要:Active learning seeks to achieve strong performance with fewer training samples. It does this by iteratively asking an oracle to label newly selected samples in a human-in-the-loop manner. This technique has gained increasing popularity due to its broad applicability, yet its survey papers, especially for deep active learning (DAL), remain scarce. Therefore, we conduct an advanced and comprehensive survey on DAL. We first introduce reviewed paper collection and filtering. Second, we formally define the DAL task and summarize the most influential baselines and widely used datasets. Third, we systematically provide a taxonomy of DAL methods from five perspectives, including annotation types, query strategies, deep model architectures, learning paradigms, and training processes, and objectively analyze their strengths and weaknesses. Then, we comprehensively summarize the main applications of DAL in natural language processing (NLP), computer vision (CV), data mining (DM), and so on. Finally, we discuss challenges and perspectives after a detailed analysis of current studies. This work aims to serve as a useful and quick guide for researchers in overcoming difficulties in DAL. We hope that this survey will spur further progress in this burgeoning field.
查看更多>>摘要:Recently, the multiscale problem in computer vision has gradually attracted people’s attention. This article focuses on multiscale representation for object detection and recognition, comprehensively introduces the development of multiscale deep learning, and constructs an easy-to-understand, but powerful knowledge structure. First, we give the definition of scale, explain the multiscale mechanism of human vision, and then lead to the multiscale problem discussed in computer vision. Second, advanced multiscale representation methods are introduced, including pyramid representation, scale-space representation, and multiscale geometric representation. Third, the theory of multiscale deep learning is presented, which mainly discusses the multiscale modeling in convolutional neural networks (CNNs) and Vision Transformers (ViTs). Fourth, we compare the performance of multiple multiscale methods on different tasks, illustrating the effectiveness of different multiscale structural designs. Finally, based on the in-depth understanding of the existing methods, we point out several open issues and future directions for multiscale deep learning.
查看更多>>摘要:The progress of brain cognition and learning mechanisms has provided new inspiration for the next generation of artificial intelligence (AI) and provided the biological basis for the establishment of new models and methods. Brain science can effectively improve the intelligence of existing models and systems. Compared with other reviews, this article provides a comprehensive review of brain-inspired deep learning algorithms for learning, perception, and cognition from microscopic, mesoscopic, macroscopic, and super-macroscopic perspectives. First, this article introduces the brain cognition mechanism. Then, it summarizes the existing studies on brain-inspired learning and modeling from the perspectives of neural structure, cognitive module, learning mechanism, and behavioral characteristics. Next, this article introduces the potential learning directions of brain-inspired learning from four aspects: perception, cognition, understanding, and decision-making. Finally, the top-ten open problems that brain-inspired learning, perception, and cognition currently face are summarized, and the next generation of AI technology has been prospected. This work intends to provide a quick overview of the research on brain-inspired AI algorithms and to motivate future research by illuminating the latest developments in brain science.
查看更多>>摘要:While reinforcement learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these causal RL (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide the existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov decision process (MDP), partially observed MDP (POMDP), multiarmed bandits (MABs), imitation learning (IL), and dynamic treatment regime (DTR). Each of them represents a distinct type of causal graphical illustration. Moreover, we summarize the evaluation matrices and open sources, while we discuss emerging applications, along with promising prospects for the future development of CRL.