首页期刊导航|Antiviral research.
期刊信息/Journal information
Antiviral research.
Elsevier/North-Holland Biomedical Press,
Antiviral research.

Elsevier/North-Holland Biomedical Press,

0166-3542

Antiviral research./Journal Antiviral research.
正式出版
收录年代

    HBV evolution and genetic variability: Impact on prevention, treatment and development of antivirals

    Goldmann, NoraLauber, ChrisSeitz, StefanGlebe, Dieter...
    11页
    查看更多>>摘要:Hepatitis B virus (HBV) poses a major global health burden with 260 million people being chronically infected and 890,000 dying annually from complications in the course of the infection. HBV is a small enveloped virus with a reverse-transcribed DNA genome that infects hepatocytes and can cause acute and chronic infections of the liver. HBV is endemic in humans and apes representing the prototype member of the viral family Hepadnaviridae and can be divided into 10 genotypes. Hepadnaviruses have been found in all vertebrate classes and constitute an ancient viral family that descended from non-enveloped progenitors more than 360 million years ago. The de novo emergence of the envelope protein gene was accompanied with the liver-tropism and resulted in a tight virus-host association. The oldest HBV genomes so far have been isolated from human remains of the Bronze Age and the Neolithic (similar to 7000 years before present). Despite the remarkable stability of the hepadnaviral genome over geological eras, HBV is able to rapidly evolve within an infected individual under pressure of the immune response or during antiviral treatment. Treatment with currently available antivirals blocking intracellular replication of HBV allows controlling of high viremia and improving liver health during long-term therapy of patients with chronic hepatitis B (CHB), but they are not sufficient to cure the disease. New therapy options that cover all HBV genotypes and emerging viral variants will have to be developed soon. In addition to the antiviral treatment of chronically infected patients, continued efforts to expand the global coverage of the currently available HBV vaccine will be one of the key factors for controlling the rising global spread of HBV. Certain improvements of the vaccine (e.g. inclusion of PreS domains) could counteract known problems such as low or no responsiveness of certain risk groups and waning anti-HBs titers leading to occult infections, especially with HBV genotypes E or F. But even with an optimal vaccine and a cure for hepatitis B, global eradication of HBV would be difficult to achieve because of an existing viral reservoir in primates and bats carrying closely related hepadnaviruses with zoonotic potential.

    Antiviral activity of methyl helicterate isolated from Helicteres angustifolia (Sterculiaceae) against hepatitis B virus (vol 100, pg 373, 2013)

    Huang, QuanfangHuang, RenbinWei, LingChen, Yongxing...
    2页

    Suppression effect of plant-derived berberine on cyprinid herpesvirus 2 proliferation and its pharmacokinetics in Crucian carp (Carassius auratus gibelio)

    Su, MeizhenTang, RuizheWang, HaoLu, Liqun...
    10页
    查看更多>>摘要:Cyprinid herpesvirus 2 (CyHV-2), which infects silver crucian carp including goldfish (Carassius auratus auratus) and Crucian carp (Carassius auratus gibelio) with high mortality, is an emerging viral pathogen worldwide. Previous studies showed that berberine (BBR), a bioactive plant-derived alkaloid, demonstrated potential antiviral actions against many different viruses. Here, we assessed the effect of berberine hydrochloride (BBH) on the replication of CyHV-2 in vitro and in vivo. Cytotoxicity assay indicated that 5-25 mu g/mL BBH was non-toxic to the RyuF-2 cells. In viral inhibition assays, real time PCR was employed to titrate the genomic copy number of progeny virus, real time RT-PCR was applied to monitor the transcriptional levels of viral genes, and Western blot analysis was performed to detect the synthetic levels of viral proteins. The results demonstrated that BBH systematically impedes the viral gene transcription and suppressed the replication of CyHV-2 in RyuF-2 cells. In animal challenge test, BBH was confirmed to protect Crucian carps from CyHV-2 infection in a dose-dependent manner, which was supported by suppressed viral replication levels, reduced viral pathogenesis and higher survival rates. Furthermore, pharmacokinetics data of BBH in Crucian carp revealed its rapid absorption (Tmax of 1.5 h), suitable plasma half-life (t1/2z/h of 7-12 h depending on oral dosage), and dose-dependent drug exposure properties following oral administration (revealed by AUC0- t values). These findings shed light on repurposing BBH to treat CyHV-2 infections in silver crucian carp.

    Identification of a novel inhibitor targeting influenza A virus group 2 hemagglutinins

    Du, RuikunCheng, HanCui, QinghuaPeet, Norton P....
    7页
    查看更多>>摘要:Influenza A virus (IAV) causes seasonal epidemics and occasional but devastating pandemics, which are major public health concerns. The putative antiviral therapeutics are useful for the treatment of influenza, however, the emerging resistant strains necessitate a constant search for new drug candidates. Here we report the discovery of a novel antiviral agent, compound CBS1194, which was identified by a parallel high-throughput screening (HTS) campaign using two retroviral pseudotypes bearing H7 or H5 hemagglutinins (HAs). Subsequent analyses demonstrated that CBS1194 is specific to IAVs of group 2, while it has no effect against those of group 1. In a time-of-addition assay, CBS1194 showed a significant inhibitory effect during the early phase of viral infection. In addition, HA-mediated hemolysis can be inhibited by CBS1194 treatment, indicating that this compound may target the HA stalk region, which is responsible for membrane fusion. Escape mutant analyses and in silico docking further revealed that CBS1194 fits into a pocket near the fusion peptide, causing steric hindrance that blocks the low-pH induced rearrangement of HA. In summary, our study identifies a novel fusion inhibitor of group 2 IAVs, which has the potential as lead compound for further development.

    Antiviral drugs targeting endosomal membrane proteins inhibit distant animal and human pathogenic viruses

    Galindo, IGaraigorta, U.Lasala, F.Cuesta-Geijo, M. A....
    12页
    查看更多>>摘要:The endocytic pathway is a common strategy that several highly pathogenic viruses use to enter into the cell. To demonstrate the usefulness of this pathway as a common target for the development of broad-spectrum antivirals, the inhibitory effect of drug compounds targeting endosomal membrane proteins were investigated. This study entailed direct comparison of drug effectiveness against animal and human pathogenic viruses, namely Ebola (EBOV), African swine fever virus (ASFV), and the severe acute respiratory syndrome coronavirus 2 (SARSCoV-2).

    Infectious bronchitis virus: Identification of Gallus gallus APN high-affinity ligands with antiviral effects

    Yu, JiaRen, YudongWang, XiurongHuang, Xiaodan...
    8页
    查看更多>>摘要:Infectious bronchitis virus (IBV) is a coronavirus, causes infectious bronchitis (IB) with high morbidity and mortality, and gives rise to huge economic losses for the poultry industry. Aminopeptidase N (APN) may be one of the IBV functional receptors. In this study, Gallus gallus APN (gAPN) protein was screened by phage-displayed 12-mer peptide library. Two high-affinity peptides H (HDYLYYTFTGNP) and T (TKFSPPSFWYLH) to gAPN protein were selected for in depth characterization of their anti-IBV effects. In vitro, indirect ELISA showed that these two high-affinity ligands could bind IBV S1 antibodies. Quantitative real-time PCR (qRT-PCR) assay, virus yield reduction assay and indirect immunofluorescence assay results revealed 3.125-50 mu g/ml of peptide H and 6.25-50 mu g/ml of peptide T reduced IBV proliferation in chicken embryo kidney cells (CEKs). In vivo, highaffinity phage-vaccinated chickens were able to induce specific IBV S1 antibodies and IBV neutralizing antibodies. QRT-PCR results confirmed that high-affinity phages reduced virus proliferation in chicken tracheas, lungs and kidneys, and alleviated IBV-induced lesions. By multiple sequence alignment, motif `YxYY' and `FxPPxxWxLH' of high-affinity peptides were identified in IBV S1-NTD, while another motif `YxFxGN' located in S2. These results indicated that high affinity peptides of gAPN could present an alternative approach to IB prevention or treatment.

    Ponesimod suppresses hepatitis B virus infection by inhibiting endosome maturation

    Fauzyah, YuzyOno, ChikakoTorii, ShihoAnzai, Itsuki...
    11页
    查看更多>>摘要:The discovery of novel antivirals to treat hepatitis B virus (HBV) infection is urgently needed, as the currently available drugs mainly target viral proteins at replication step, whereas host factors also play significant roles in HBV infection. Although numerous studies have reported candidate drugs for HBV treatment, there remains a need to find a new drug that may target other steps of the HBV life cycle. In this study, by drug screening of a 533 G-protein-coupled receptors (GPCRs)-associated compound library, we identified ponesimod, a selective agonist of sphingosine-1-phosphate receptor 1 (S1P(1)), as a drug candidate for the suppression of HBV infection. However, the anti-HBV effect of ponesimod is independent of S1P(1) and other sphingosine-1-phosphate receptors (S1PRs). Treatment with ponesimod at an early step of infection but not at a post-entry step significantly reduced the HBV relaxed circular DNA (rcDNA) level in a dose-dependent manner. Ponesimod treatment did not inhibit attachment, binding, or internalization of HBV particles via endocytosis through an interaction with sodium taurocholate cotransporting polypeptide (NTCP) or epidermal growth factor receptor (EGFR). Importantly, during the transportation of HBV particles to the nucleus, co-localization of HBV with early endosomes but not with late endosomes and lysosomes was induced by the treatment with ponesimod, suggesting that ponesimod interferes with the conversion of early endosomes to late endosomes without significant damage to cellular growth. Conclusion: Ponesimod is a promising anti-HBV drug targeting the endosome maturation of HBV. This finding can be applied to the development of novel antivirals that target the trafficking pathway of HBV particles.

    Host RNA quality control as a hepatitis B antiviral target

    Young, John A. T.Javanbakht, HassanSofia, Michael J.Block, Timothy M....
    8页
    查看更多>>摘要:Inhibition of the host RNA polyadenylating polymerases, PAPD5 and PAPD7 (PAPD5/7), with dihydroquinolizinone, a small orally available, molecule, results in a rapid and selective degradation of hepatitis B virus (HBV) RNA, and hence reduction in the amounts of viral gene products. DHQ, is a first in class investigational agent and could represent an entirely new category of HBV antivirals. PAPD5 and PAPD7 are noncanonical, cell specified, polyadenylating polymerases, also called terminal nucleotidyl transferases 4B and 4A (TENT4B/A), respectively. They are involved in the degradation of poor-quality cell transcripts, mostly noncoding RNAs and in the maturation of a sub-set of transcripts. They also appear to play a role in shielding some mRNA from degradation. The results of studies with DHQ, along with other recent findings, provide evidence that repression of the PAPD5/7 arm of the cell "RNA quality control" pathway, causes a profound (multifold) reduction rather than increase, in the amount of HBV pre-genomic, pre-core and HBsAg mRNA levels in tissue culture and animal models, as well. In this review we will briefly discuss the need for new HBV therapeutics and provide background about HBV transcription. We also discuss cellular degradation of host transcripts, as it relates to a new family of anti-HBV drugs that interfere with these processes. Finally, since HBV mRNA maturation appears to be selectively sensitive to PAPD5/7 inhibition in hepatocytes, we discuss the possibility of targeting host RNA "quality control" as an antiviral strategy.

    The rocaglate CR-31-B (-) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo

    Mueller, ChristinObermann, WiebkeKarl, NadjaWendel, Hans-Guido...
    5页
    查看更多>>摘要:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, a severe respiratory disease with varying clinical presentations and outcomes, and responsible for a major pandemic that started in early 2020. With no vaccines or effective antiviral treatments available, the quest for novel therapeutic solutions remains an urgent priority. Rocaglates, a class of plant-derived cyclopenta[b]benzofurans, exhibit broad-spectrum antiviral activity against multiple RNA viruses including coronaviruses. Specifically, rocaglates inhibit eukaryotic initiation factor 4A (eIF4A)-dependent mRNA translation initiation, resulting in strongly reduced viral RNA translation. Here, we assessed the antiviral activity of the synthetic rocaglate CR-31-B (-) against SARS-CoV-2 using both in vitro and ex vivo cell culture models. In Vero E6 cells, CR-31-B (-) inhibited SARS-CoV-2 replication with an EC50 of similar to 1.8 nM. In primary human airway epithelial cells, CR-31-B (-) reduced viral titers to undetectable levels at a concentration of 100 nM. Reduced virus reproduction was accompanied by substantially reduced viral protein accumulation and replication/transcription complex formation. The data reveal a potent anti-SARS-CoV-2 activity by CR-31-B (-), corroborating previous results obtained for other coronaviruses and supporting the idea that rocaglates may be used in first-line antiviral intervention strategies against novel and emerging RNA virus outbreaks.

    Adefovir dipivoxil efficiently inhibits the proliferation of pseudorabies virus in vitro and in vivo

    Wang, GuosongChen, RuiqiHuang, PengfeiHong, Junping...
    9页
    查看更多>>摘要:Since 2011, highly pathogenic pseudorabies virus (PRV) variants that emerged on many farms in China have posed major economic burdens to the animal industry and have even recently caused several human cases of viral encephalitis. Currently, there are no approved effective drugs to treat PRV associated diseases in humans or pigs. Thus, it is important to develop a new effective drug for the treatment of PRV infection. To this end, we established a novel rapid method to screen drugs against PRV from 1818 kinds of small molecular drugs approved by the FDA. Using this method, we identified 21 kinds of them that can strongly suppress the proliferation of PRV. Mitoxantrone, puromycin dihydrochloride, mitoxantrone hydrochloride and adefovir dipivoxil effectively inhibited PRV in vitro. Of them, only adefovir dipivoxil could potently protect mice against lethal PRV infection. Our work identifies several kinds of potential therapeutics against PRV and may offer important guidance for controlling PRV epidemics and treating associated diseases in humans and animals.