查看更多>>摘要:Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) may result in autoimmune diseases, such as rheumatoid arthritis (RA) and osteoporosis (OP), which are based on an imbalance in bone homeostasis. These diseases are characterized by bone erosion and even a disruption in homeostasis, including in osteoblasts and osteoclasts. Current evidence indicates that multiple factors affect the progression of bone homeostasis, such as genetic susceptibility and epigenetic modifications. However, environmental factors, especially PAHs from various sources, have been shown to play an increasingly prominent role in the progression of bone homeostasis. Hence, it is essential to investigate the effects and pathogenesis of PAHs in bone homeostasis. In this review, recent progress is summarized concerning the effects and mechanisms of PAHs and their ligands and receptors in bone homeostasis. Moreover, strategies based on the effects and mechanisms of PAHs in the regulation of the bone balance and alleviation of bone destruction are also reviewed. We further discuss the future challenges and perspectives regarding the roles of PAHs in autoimmune diseases based on bone homeostasis.
查看更多>>摘要:Beta-thalassemia (BT) is a hereditary disease caused by abnormal hemoglobin synthesis with consequent ineffective erythropoiesis. Patients with thalassemia major are dependent on long-term blood transfusions with associated long-term complications such as iron overload (IO). This excess iron can result in tissue damage, impaired organ function, and increased morbidity. Growing evidence has demonstrated that IO contributes to impairment of the bone marrow (BM) microenvironment that largely impacts the function of BM mesenchymal stem cells, hematopoietic stem cells, and endothelial cells. In this article, we review recent progress in the understanding of iron metabolism and the perniciousness induced by IO. We highlight the importance of understanding the cross-talk between BM stem cells and the BM microenvironment, particularly the pathological effect of IO on BM stem cells and BT-associated complications. We also provide an update on recent novel therapies to cure transfusion-dependent beta-thalassemia and iron overload-induced complications for their future clinical application.
查看更多>>摘要:MAP/microtubule affinity-regulating kinases (MARKs) were recently identified as potential drug targets for Alzheimer's disease (AD) due to their role in pathological hyperphosphorylation of tau protein. Hyper-phosphorylated tau has decreased affinity for microtubule binding, impairing their stability and associated functions. Destabilization of microtubules in neuronal cells leads to neurodegeneration, and microtubule-unbound tau forms neurofibrillary tangles, one of the primary hallmarks of AD. Many phosphorylation sites of tau protein have been identified, but phosphorylation at Ser262 , which occurs in early stages of AD, plays a vital role in the pathological hyperphosphorylation of tau. It has been found that Ser262 is phosphorylated by MARK4, which is currently an intensively studied target for treating Alzheimer's disease and other neurodegenerative diseases. Our present study aimed to develop a high throughput compatible assay to directly detect MARK enzymatic activity using echoacoustic transfer and MALDI-TOF mass spectrometer. We optimized the assay for all four isoforms of MARK and validated its use for identifying potential inhibitors by the screening of 1280 compounds from the LOPAC?1280 International (Library Of Pharmacologically Active Compounds). Six MARK4 inhibitors with IC_50 < 1 μM were identified. To demonstrate their therapeutic potential, active compounds were further tested for MARK4 selectivity and ability to cross the blood-brain barrier. Lastly, the molecular docking with the most active inhibitors to predict their interaction with MARK4 was performed.
查看更多>>摘要:Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-CoV-2) has become a global pandemic. The β-Coro-naviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.
查看更多>>摘要:This study tested the hypothesis that valsartan (Val) and melatonin (Mel)-assisted adipose-derived mesenchymal stem cells (ADMSCs) preserved the residual renal function in chronic kidney disease (CKD) rat through promoting cellular-prior-protein (PrP~C) to upregulate PI3K/Akt/mTOR signaling and cell proliferation. In vitro study demonstrated that as compared with CKD-derived-ADMSCs, Val/Mel/overexpression of PrP~C-treated CKD derived-ADMSCs significantly upregulated cell proliferation and protein expressions of PrP~C and phosphorylated (p)-PI3K/p-Akt/p-mTOR, and downregulated oxidative stress (all p < 0.001). Rats (n = 42) were categorized into group 1 (sham-operated-control), group 2 (CKD), group 3 (CKD + ADMSCs/1.2 x10~6 cells) + Mel/20 mg/kg/ day), group 4 (CKD + siRNA-PrP~C-ADMSCs/1.2 x10~6 cells), group 5 (CKD + ADMSCs/1.2 x10~6 cells + Val/20 mg/kg/day) and group 6 (CKD + Val + Mel). By day 35, the kidney specimens were harvested and the result showed that the protein expression of PrPC was highest in group 1, lowest in groups 2/4 and significantly lower in group 6 than in groups 3/5, but it was similar in groups 3/5 (all p < 0.0001). The protein expressions of cell-stress-signaling (p-PI3K/p-Akt/p-mTOR) and cell-cycle activity (cyclin-D1/clyclin-E2/Cdk2/Cdk4) exhibited an identical pattern, whereas the protein expressions of oxidative-stress (NOX-1/NOX-2)/mitochondrial fission (PINK1/DRP1)/apoptosis (cleaved-capsase3/cleaved-PARP) and fibrosis (TFG-?/Smad3) as well as creatinine/BUN levels, ratio of urine-protein to urine-creatine and kidney-injured score exhibited an opposite pattern of PrPC among the groups (all p < 0.0001). In conclusion, Mel/Val facilitated-ADMSCs preserved renal architecture and function in CKD rat through promoting PrPC to regulate the cell proliferation/oxidative-stress/cell-stress signalings.
查看更多>>摘要:Blood glucose is inadequately controlled in diabetes mellitus, causing various inflammation-related complications. This study aimed to investigate responses to an oral sucrose/lipid challenge in the context of glucose metabolism after consumption of Mori ramulus (MR) extract. In this study on healthy subjects, the optimal dose and safety of MR were confirmed in a preliminary pilot trial (n = 24), meanwhile, blood glucose, insulin, and inflammatory marker levels were detected via an oral sucrose/lipid tolerance test in the main trial (n = 36). In the main study, the blood glucose response was significantly decreased after 240 min in the MR group. Compared to the placebo group, the treatment group exhibited plasma insulin levels that were significantly increased at 120 min and decreased at 240 min. In conclusion, a single MR extract dose protects against inflammation induced by high-fat/sugar to maintain normal insulin secretion and thus helps to maintain postprandial blood glucose levels via an inflammatory mechanism.
查看更多>>摘要:Vitamin C also known as L-ascorbic acid is a nutrient naturally occurring in many fruits and vegetables and widely known for its potent antioxidant activity. Several studies have highlighted the importance of using high dose vitamin C as an adjuvant anti-cancer therapy. Interestingly, it has been shown that vitamin C is able to modulate the anti-cancer immune response and to help to overcome the resistance to immune checkpoints blockade (ICB) drugs such as cytotoxic T-lymphocyte antigen 4 (CLTA-4) and programmed cell death ligand 1 (PD-L1/PD-1) inhibitors. Indeed, it was reported that vitamin C regulates several mechanisms developed by cancer cells to escape T cells immune response and resist ICB. Understanding the role of vitamin C in the anti-tumor immune response will pave the way to the development of novel combination therapies that would enhance the response of cancer patients to ICB immunotherapy. In this review, we discuss the effect of vitamin C on the immune system and its potential role in empowering cancer immunotherapy through its pro-oxidant potential, its ability to modulate epigenetic factors and its capacity to regulate the expression of different cy-tokines involved in the immune response.
Lucia RecinellaAnnalisa ChiavaroliSerena VeschiValentina Di Valerio...
1页
查看更多>>摘要:Colorectal cancer (CRC) is an aggressive tumor in which new treatment options deliver negative results on cure rates and long-term survival. The anticancer effects of growth hormone-releasing hormone (GHRH) antagonists have been reported in various experimental tumors, but their activity in CRC is unknown. In the present study, we demonstrated that chronic treatment with GHRH antagonist of MIAMI class, MIA-690, promoted survival and gradually blunted tumor progression in experimentally induced colitis-associated cancer in mice, paralleled by reduced inflammation in colon tissue. In particular, MIA-690 improved disease activity index score, and reduced loss of weight and mortality, by improving the survival rates, compared with vehicle-treated group. MIA-690 was also found to reduce various inflammatory and oxidative markers, such as serotonin, prostaglandin (PG)E2 and 8-iso-PGF2α levels, as well as COX-2, iNOS, TNF-α, IL-6 and NF-kB gene expression. Moreover, MIA-690 inhibited the protein expression of c-Myc, P-AKT and Bcl-2 and upregulated p53 protein expression. In conclusion, we showed that MIA-690 suppresses CRC progression and growth by reducing inflammatory and oxidative markers and modulating apoptotic and oncogenic pathways. Further investigations are required for translating these findings into the clinics.
查看更多>>摘要:Human exposure to radiation has expanded considerably in recent years, due to a wide range of medical, agricultural, and industrial applications. Despite its beneficial utilities, radiation is also known to have a deleterious effect on cells and tissues, largely through the creation of free radicals, which cause severe damage to biological systems through processes such as DNA double/single-strand fragmentation, protein modification, and upregulation of lipid peroxidation pathways. In addition, radiation damages genetic material while inducing hereditary genotoxicity. Developing measures to counter radiation-induced damage is thus considered to be of significant importance. Considering the inherent capability of plants to survive radiative conditions, certain plants and natural compounds have been the subject of investigations to explore and harness their natural radio protective abilities. Podophyllum hexandrum, an Indian medicinal plant with several known traditional phytotherapeutic uses, is considered in particular to be of immense therapeutic importance. Recent studies have been conducted to validate its radio protective potential alongside discovering its protective mechanisms following γ-radiation-induced mortality and disorder in both mice and human cells. These findings show that Podophyllum and its constituents/natural compounds protect the lungs, gastrointestinal tissues, hemopoietic system, and testis by inducing DNA repair pathways, apoptosis inhibition, free radical scavenging, metal che-lation, anti-oxidation and anti-inflammatory mechanisms. In this review, we have provided an updated, comprehensive summary of ionizing radiations and their impacts on biological systems, highlighting the mechanistic and radioprotective role of natural compounds from Podophyllum hexandrum.
查看更多>>摘要:Acetylcholinesterase (AChE) inhibitor is the first choice for the treatment of Alzheimer's disease (AD), but it has some defects, such as dose limitation and unsatisfactory long-term treatment effect. Recent studies have shown that butyrylcholinesterase (BuChE) inhibitors or double acetyl and butyryl cholinesterase inhibitors have better curative effects on AD, and the side effects are lower than those of specific AChE inhibitors. Dual target cholinesterase inhibitors have become a new hotspot in the research of anti-AD drugs. Herein, the synthesis and bioactivities of BuChE inhibitors were reviewed.