查看更多>>摘要:? 2021 Elsevier LtdTransformers are widely used in natural language processing due to their ability to model longer-term dependencies in text. Although these models achieve state-of-the-art performance for many language related tasks, their applicability outside of the natural language processing field has been minimal. In this work, we propose the use of transformer models for the prediction of dynamical systems representative of physical phenomena. The use of Koopman based embeddings provides a unique and powerful method for projecting any dynamical system into a vector representation which can then be predicted by a transformer. The proposed model is able to accurately predict various dynamical systems and outperform classical methods that are commonly used in the scientific machine learning literature.1
查看更多>>摘要:? 2021 Elsevier LtdAlthough multi-view clustering has received widespread attention due to its far superior performance to single-view clustering, it still faces the following issues: (1) high computational cost, considering the introduction of multi-view information, reduces the clustering efficiency greatly; (2) complex noises and outliers, existed in real-world data, pose a huge challenge to the robustness of clustering algorithms. Currently, how to increase the efficiency and robustness has become two important issues of multi-view clustering. To cope with the above issues, an efficient correntropy-based multi-view clustering algorithm (ECMC) is proposed in this paper, which can not only improve clustering efficiency by constructing embedded anchor graph and utilizing nonnegative matrix factorization (NMF), but also enhance the robustness by exploring correntropy to suppress various noises and outliers. To further improve clustering efficiency, one of the factors of NMF is constrained to be an indicator matrix instead of a traditional non-negative matrix, so that the categories of samples can be obtained directly without any extra operation. Subsequently, a novel half-quadratic-based strategy is proposed to optimize the non-convex objective function of ECMC. Finally, extensive experiments on eight real-world datasets and eighteen noisy datasets show that ECMC can guarantee faster speed and better robustness than other state-of-the-art multi-view clustering algorithms.
查看更多>>摘要:? 2021 Elsevier LtdMatrix reordering is a task to permute the rows and columns of a given observed matrix such that the resulting reordered matrix shows meaningful or interpretable structural patterns. Most existing matrix reordering techniques share the common processes of extracting some feature representations from an observed matrix in a predefined manner, and applying matrix reordering based on it. However, in some practical cases, we do not always have prior knowledge about the structural pattern of an observed matrix. To address this problem, we propose a new matrix reordering method, called deep two-way matrix reordering (DeepTMR), using a neural network model. The trained network can automatically extract nonlinear row/column features from an observed matrix, which can then be used for matrix reordering. Moreover, the proposed DeepTMR provides the denoised mean matrix of a given observed matrix as an output of the trained network. This denoised mean matrix can be used to visualize the global structure of the reordered observed matrix. We demonstrate the effectiveness of the proposed DeepTMR by applying it to both synthetic and practical datasets.
查看更多>>摘要:? 2021 The Author(s)The vestibulo-ocular reflex (VOR) stabilizes vision during head motion. Age-related changes of vestibular neuroanatomical properties predict a linear decay of VOR function. Nonetheless, human epidemiological data show a stable VOR function across the life span. In this study, we model cerebellum-dependent VOR adaptation to relate structural and functional changes throughout aging. We consider three neurosynaptic factors that may codetermine VOR adaptation during aging: the electrical coupling of inferior olive neurons, the long-term spike timing-dependent plasticity at parallel fiber – Purkinje cell synapses and mossy fiber – medial vestibular nuclei synapses, and the intrinsic plasticity of Purkinje cell synapses Our cross-sectional aging analyses suggest that long-term plasticity acts as a global homeostatic mechanism that underpins the stable temporal profile of VOR function. The results also suggest that the intrinsic plasticity of Purkinje cell synapses operates as a local homeostatic mechanism that further sustains the VOR at older ages. Importantly, the computational epidemiology approach presented in this study allows discrepancies among human cross-sectional studies to be understood in terms of interindividual variability in older individuals. Finally, our longitudinal aging simulations show that the amount of residual fibers coding for the peak and trough of the VOR cycle constitutes a predictive hallmark of VOR trajectories over a lifetime.
查看更多>>摘要:? 2021 Elsevier LtdIn neurological and neuropsychiatric disorders neuronal oscillatory activity between basal ganglia and cortical circuits are altered, which may be useful as biomarker for adaptive deep brain stimulation. We investigated whether changes in the spectral power of oscillatory activity in the motor cortex (MCtx) and the sensorimotor cortex (SMCtx) of rats after injection of the dopamine (DA) receptor antagonist haloperidol (HALO) would be similar to those observed in Parkinson disease. Thereafter, we tested whether a convolutional neural network (CNN) model would identify brain signal alterations in this acute model of parkinsonism. A sixteen channel surface micro-electrocorticogram (ECoG) recording array was placed under the dura above the MCtx and SMCtx areas of one hemisphere under general anaesthesia in rats. Seven days after surgery, micro ECoG was recorded in individual free moving rats in three conditions: (1) basal activity, (2) after injection of HALO (0.5 mg/kg), and (3) with additional injection of apomorphine (APO) (1 mg/kg). Furthermore, a CNN-based classification consisting of 23,530 parameters was applied on the raw data. HALO injection decreased oscillatory theta band activity (4–8 Hz) and enhanced beta (12–30 Hz) and gamma (30–100 Hz) in MCtx and SMCtx, which was compensated after APO injection (P ? 0.001). Evaluation of classification performance of the CNN model provided accuracy of 92%, sensitivity of 90% and specificity of 93% on one-dimensional signals. The CNN proposed model requires a minimum of sensory hardware and may be integrated into future research on therapeutic devices for Parkinson disease, such as adaptive closed loop stimulation, thus contributing to more efficient way of treatment.
查看更多>>摘要:? 2021 Elsevier LtdThe fixed-time synchronization and preassigned-time synchronization of quaternion-valued neural networks are concerned in this article. By developing fixed-time stability and proposing a pure power-law control scheme, some simple conditions are obtained to realize fixed-time synchronization of quaternion-valued neural networks and the upper bound of the synchronized time is provided. Furthermore, the preassigned-time synchronization of quaternion-valued neural networks is investigated based on pure power-law control design, where the synchronization time is preassigned in advance and the control gains are finite. Note that the designed controllers in this paper are the pure power-law forms, which are simpler and more effective compared with the traditional design composed of the linear part and power-law part. Eventually, an example is given to illustrate the feasibility and validity of the results obtained.
查看更多>>摘要:? 2021 Elsevier LtdRecently, deep semi-supervised graph embedding learning has drawn much attention for its appealing performance on the data with a pre-specified graph structure, which could be predefined or empirically constructed based on given data samples. However, the pre-specified graphs often contain considerable noisy/inaccurate connections and have a huge size for large datasets. Most existing embedding algorithms just take the graph off the shelf during the whole training stage and thus are easy to be misled by the inaccurate graph edges, as well as may result in large model size. In this paper, we attempt to address these issues by proposing a novel deep semi-supervised algorithm for simultaneous graph embedding and node classification, utilizing dynamic graph learning in neural network hidden layer space. Particularly, we construct an anchor graph to summarize the whole dataset using the hidden layer features of a consistency-constrained network. The anchor graph is used for sampling node neighborhood context, which is then presented together with node labels as contextual information to train an embedding network. The outputs of the consistency network and the embedding networks are finally concatenated together to pass a softmax function to perform node classification. The two networks are optimized jointly using both labeled and unlabeled data to minimize a single semi-supervised objective function, including a cross-entropy loss, a consistency loss and an embedding loss. Extensive experimental results on popular image and text datasets have shown that the proposed method is able to improve the performance of existing graph embedding and node classification methods, and outperform many state-of-the-art approaches on both types of datasets.