查看更多>>摘要:Subviral agents are nucleic acids which lack the features for classification as a virus. Tombusvirus-like associated RNAs (tlaRNAs) are subviral positive-sense, single-stranded RNAs that replicate autonomously, yet depend on a coinfecting virus for encapsidation and transmission. TlaRNAs produce abundant subgenomic RNA (sgRNA) upon infection. Here, we investigate how the well-studied tlaRNA, ST9, produces sgRNA and its function. We found ST9 is a noncoding RNA, due to its lack of protein coding capacity. We used resistance assays with eukaryotic Exoribonuclease-1 (XRN1) to investigate sgRNA production via incomplete degradation of genomic RNA. The ST9 3' untranslated region stalled XRN1 very near the 5' sgRNA end. Thus, the XRN family of enzymes drives sgRNA accumulation in ST9-infected tissue by incomplete degradation of ST9 RNA. This work suggests tlaRNAs are not just parasites of viruses with compatible capsids, but also mutually beneficial partners that influence host cell RNA biology.
查看更多>>摘要:Tape measure (TM) proteins are essential for the formation of long-tailed phages. TM protein assembly into tails requires the action of tail assembly chaperones (TACs). TACs (e.g. gpG and gpT of E. coli phage lambda) are usually produced in a short (TAC-N) and long form (TAC-NC) with the latter comprised of TAC-N with an additional C-terminal domain (TAC-C). TAC-NC is generally synthesized through a ribosomal frameshifting mechanism. TAC encoding genes have never been identified in the intensively studied Escherichia coli phage T4, or any related phages. Here, we have bioinformatically identified putative TAC encoding genes in diverse T4-like phage genomes. The frameshifting mechanism for producing TAC-NC appears to be conserved in several T4-like phage groups. However, the group including phage T4 itself likely employs a different strategy whereby TAC-N and TAC-NC are encoded by separate genes (26 and 51 in phage T4).
Oropeza, Claudia E. E.Ondracek, Caitlin R. R.Tarnow, GrantMaienschein-Cline, Mark...
10页
查看更多>>摘要:Chronic HBV infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The phenotypes of HCC are diverse, in part, due to mutations in distinct oncogenes and/or tumor suppressor genes. These genetic drivers of HCC development have generally been considered as major mediators of tumor heterogeneity. Using the liver-specific Pten-null HBV transgenic mouse model of chronic viral infection, a critical role for liver lobule zone-specific gene expression patterns in determining HCC phenotype and beta-catenin-dependent HBV biosynthesis is demonstrated. These observations suggest that the position of the hepatocyte within the liver lobule, and hence its intrinsic gene expression pattern at the time of cellular transformation, make critical contributions to the properties of the resulting liver tumor. These results may explain why therapies targeting pathways modulated by specific identified tumor driver genes display variable treatment efficacy.
查看更多>>摘要:Upon entry of Human cytomegalovirus (HCMV) into the host cell, the viral genome is transported to the nucleus where it serves as a template for transcription and genome replication. Production of new viral genomes is a coordinated effort between viral and cellular proteins. While the core replication proteins are encoded by the virus, additional cellular proteins support the process of genome synthesis. We used accelerated native isolation of proteins on nascent DNA (aniPOND) to study protein dynamics on nascent viral DNA during HCMV infection. Using this method, we identified specific viral and cellular proteins that are associated with nascent viral DNA. These included transcription factors, transcriptional regulators, DNA damage and repair factors, and chromatin remodeling complexes. The association of these identified proteins with viral DNA was confirmed by immunofluorescent imaging, chromatin-immunoprecipitation analyses, and shRNA knockdown experiments. These data provide evidence for the requirement of cellular factors involved in HCMV replication.
查看更多>>摘要:All available SARS-CoV-2 spike protein crystal and cryo-EM structures have shown missing electron densities for cytosolic C-terminal regions (CTR). Generally, the missing electron densities point towards the intrinsically disordered nature of the protein region (IDPR). This curiosity has led us to investigate the cytosolic CTR of the spike glycoprotein of SARS-CoV-2 in isolation. The spike CTR is supposed to be from 1235 to 1273 residues or 1242-1273 residues based on our used prediction. Therefore, we have demonstrated the structural conformation of cytosolic region and its dynamics through computer simulations up to microsecond timescale using OPLS and CHARMM forcefields. The simulations have revealed the unstructured conformation of cytosolic region. Further, we have validated our computational observations with circular dichroism (CD) spectroscopy-based experiments and found its signature spectra at 198 nm. We believe that our findings will surely help in understanding the structure-function relationship of the spike protein's cytosolic region.
查看更多>>摘要:Background: Recombinant protein subunit vaccination is considered to be a safe, fast and reliable technique when combating emerging and re-emerging diseases such as coronavirus disease 2019 (COVID-19). Typically, such subunit vaccines require the addition of adjuvants to attain adequate immunogenicity. AS01, which contains adjuvants MPL and saponin QS21, is a liposome-based vaccine adjuvant system that is one of the leading candidates. However, the adjuvant effect of AS01 in COVID-19 vaccines is not well described yet. Methods: In this study, we utilized a mixture of AS01 as the adjuvant for an S1 protein-based COVID-19 vaccine. Results: The adjuvanted vaccine induced robust immunoglobulin G (IgG) binding antibody and virus-neutralizing antibody responses. Importantly, two doses induced similar levels of IgG binding antibody and neutralizing antibody responses compared with three doses and the antibody responses weakened only slightly over time up to six weeks after immunization. Conclusion: These results suggested that two doses may be enough for a clinical vaccine strategy design using MPL & QS21 adjuvanted recombinant protein, especially in consideration of the limited production capacity of COVID-19 vaccine in a public health emergency.
Raymonda, M. H.Ciesla, J. H.Monaghan, M.Leach, J....
9页
查看更多>>摘要:The emergence of SARS-CoV-2 virus has resulted in a worldwide pandemic, but effective antiviral therapies are not widely available. To improve treatment options, we conducted a high-throughput screen to uncover compounds that block SARS-CoV-2 infection. A minimally pathogenic human betacoronavirus (OC43) was used to infect physiologically-relevant human pulmonary fibroblasts (MRC5) to facilitate rapid antiviral discovery in a preclinical model. Comprehensive profiling was conducted on more than 600 compounds, with each compound arrayed across 10 dose points. Our screening revealed several FDA-approved agents that can attenuate both OC43 and SARS-CoV-2 viral replication, including lapatinib, doramapimod, and 17-AAG. Importantly, lapatinib inhibited SARS-CoV-2 RNA replication by over 50,000-fold. Further, both lapatinib and doramapimod could be combined with remdesivir to improve antiviral activity in cells. These findings reveal novel therapeutic avenues that could limit SARS-CoV-2 infection.
查看更多>>摘要:Background: Acquired immunodeficiency syndrome (AIDS) is a disease arising from human immunodeficiency virus (HIV). Antiretroviral therapy (ART) is a main therapeutic regimen for inhibiting HIV proliferation and viability. Identification of differentially expressed genes (DEGs) in HIV-infected patients with and without ART could provide theoretical evidence for deep research into the efficacy of ART and corresponding mechanism.Methods: In this study, mRNA microarray data (GSE108296) of HIV-infected patients who received and didn't receive ART were downloaded from Gene Expression Omnibus (GEO) database. DEGs were obtained through differential analysis with R package limma. Then, protein-protein interaction (PPI) analysis was performed to identify hub genes and functional modules. Besides, immune-related DEGs were screened, followed by GO annotation and KEGG pathway enrichment analysis. Moreover, various immune cells and immune functions in samples were analyzed by ESTIMATE, ssGSEA and CIBERSORT, based on which the immune function of HIV infected patients who received and didn't receive ART was evaluated.Results: A total of 109 DEGs were obtained from differential analysis. Among them, 19 immune-related DEGs were identified and subjected to GO and KEGG enrichment analyses. Furthermore, PPI network analysis was undertaken on the 109 DEGs. 10 hub genes and 3 functional modules were further screened. It was shown that these genes and functional modules were correlated with immune functions and relevant signaling pathways. ESTIMATE, ssGSEA and CIBERSORT results displayed that HIV-infected patients with ART presented a relatively high immune level.Conclusion: According to bioinformatics analysis, we reasonably posited that HIV-infected patients who received ART had an increased immune level relative to patients who didn't receive ART.
查看更多>>摘要:The infectious bronchitis virus (IBV) 4/91 was one of the common IBV variants isolated in Eastern Canada between 2013 and 2017 from chicken flocks showing severe respiratory and production problems. We designed an in vivo experiment, using specific pathogen free (SPF) chickens, to study the pathogenesis of, and host response to, Canadian (CAN) 4/91 IBV infection. At one week of age, the chickens were infected with 4/91 IBV/Ck/Can/ 17-038913 isolate. Swab samples were collected at predetermined time points. Five birds from the infected and the control groups were euthanized at 3, 7-and 10-days post-infection (dpi) to collect lung and kidney tissues. The results indicate IBV replication in these tissues at all three time points with prominent histological lesions, significant immune cell recruitment and up regulation of proinflammatory mediators. Overall, our findings add to the understanding of the pathogenesis of 4/91 infection and the subsequent host responses in the lungs and kidneys following experimental infection.
Heinimaki, SuviLampinen, ViliTamminen, KirsiHankaniemi, Minna M....
9页
查看更多>>摘要:Virus-like particles (VLPs) modified through different molecular technologies are employed as delivery vehicles or platforms for heterologous antigen display. We have recently created a norovirus (NoV) VLP platform, where two influenza antigens, the extracellular domain of matrix protein M2 (M2e) or the stem domain of the major envelope glycoprotein hemagglutinin (HA2) are displayed on the surface of the NoV VLPs by SpyTag/SpyCatcher conjugation. To demonstrate the feasibility of the platform to deliver foreign antigens, this study examined potential interference of the conjugation with induction of antibodies against conjugated M2e peptide, HA2, and NoV VLP carrier. High antibody response was induced by HA2 but not M2e decorated VLPs. Furthermore, HA2elicited antibodies did not neutralize the homologous influenza virus in vitro. Conjugated NoV VLPs retained intact receptor binding capacity and self-immunogenicity. The results demonstrate that NoV VLPs could be simultaneously used as a platform to deliver foreign antigens and a NoV vaccine.