查看更多>>摘要:Most clinical and biomedical data contain missing values. A patient's record may be split across multiple institutions, devices may fail, and sensors may not be worn at all times. While these missing values are often ignored, this can lead to bias and error when the data are mined. Further, the data are not simply missing at random. Instead the measurement of a variable such as blood glucose may depend on its prior values as well as that of other variables. These dependencies exist across time as well, but current methods have yet to incorporate these temporal relationships as well as multiple types of missingness. To address this, we propose an imputation method (FLk-NN) that incorporates time lagged correlations both within and across variables by combining two imputation methods, based on an extension to k-NN and the Fourier transform. This enables imputation of missing values even when all data at a time point is missing and when there are different types of missingness both within and across variables. In comparison to other approaches on three biological datasets (simulated and actual Type 1 diabetes datasets, and multi-modality neurological ICU monitoring) the proposed method has the highest imputation accuracy. This was true for up to half the data being missing and when consecutive missing values are a significant fraction of the overall time series length. (C) 2015 Elsevier Inc. All rights reserved.
查看更多>>摘要:Scientific text annotation has become an important task for biomedical scientists. Nowadays, there is an increasing need for the development of intelligent systems to support new scientific findings. Public data-bases available on the Web provide useful data, but much more useful information is only accessible in scientific texts. Text annotation may help as it relies on the use of ontologies to maintain annotations based on a uniform vocabulary. However, it is difficult to use an ontology, especially those that cover a large domain. In addition, since scientific texts explore multiple domains, which are covered by distinct ontologies, it becomes even more difficult to deal with such task. Moreover, there are dozens of ontologies in the biomedical area, and they are usually big in terms of the number of concepts. It is in this context that ontology modularization can be useful. This work presents an approach to annotate scientific documents using modules of different ontologies, which are built according to a module extraction technique. The main idea is to analyze a set of single-ontology annotations on a text to find out the user interests. Based on these annotations a set of modules are extracted from a set of distinct ontologies, and are made available for the user, for complementary annotation. The reduced size and focus of the extracted modules tend to facilitate the annotation task. An experiment was conducted to evaluate this approach, with the participation of a bioinformatician specialist of the Laboratory of Peptides and Proteins of the IOC/Fiocruz, who was interested in discovering new drug targets aiming at the combat of tropical diseases. (C) 2015 Elsevier Inc. All rights reserved.
查看更多>>摘要:The human genome encodes for a family of editing enzymes known as APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like3). They induce context dependent G-to-A changes, referred to as "hypermutation", in the genome of viruses such as HIV, SIV, HBV and endogenous retroviruses. Hypermutation is characterized by aligning affected sequences to a reference sequence. We show that indels (insertions/deletions) in the sequences lead to an incorrect assignment of APOBEC3 targeted and non-target sites. This can result in an incorrect identification of hypermutated sequences and erroneous biological inferences made based on hypermutation analysis. (C) 2015 Elsevier Inc. All rights reserved.
查看更多>>摘要:The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naive SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p < 0.001) and theoretic Mann-Whitney U test (p < 10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large number of downstream proteins. Indeed, we verify that this property is independent of the hubness in protein networks for which these mRNAs are transcribed. Our findings provide novel insights into the pleiotropy of mRNAs targeted by complex disease polymorphisms and the architecture of the information flow between the genetic polymorphisms and transcriptomes of complex diseases. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.
查看更多>>摘要:Spontaneous reporting systems of adverse drug events have been widely established in many countries to collect as could as possible all adverse drug events to facilitate the detection of suspected ADR signals via some statistical or data mining methods. Unfortunately, due to privacy concern or other reasons, the reporters sometimes may omit consciously some attributes, causing many missing values existing in the reporting database. Most of research work on ADR detection or methods applied in practice simply adopted listwise deletion to eliminate all data with missing values. Very little work has noticed the possibility and examined the effect of including the missing data in the process of ADR detection. This paper represents our endeavor towards the exploration of this question. We aim at inspecting the feasibility of applying rough set theory to the ADR detection problem. Based on the concept of utilizing characteristic set based approximation to measure the strength of ADR signals, we propose twelve different rough set based measuring methods and show only six of them are feasible for the purpose. Experimental results conducted on the FARES database show that our rough-set-based approach exhibits similar capability in timeline warning of suspicious ADR signals as traditional method with missing deletion, and sometimes can yield noteworthy measures earlier than the traditional method. (C) 2015 Elsevier Inc. All rights reserved.
查看更多>>摘要:There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data. (C) 2015 Elsevier Inc. All rights reserved.
查看更多>>摘要:In Traditional Chinese Medicine (TCM), the prescription is the crystallization of clinical experience of doctors, which is the main way to cure diseases in China for thousands of years. Clinical cases, on the other hand, describe how doctors diagnose and prescribe. In this paper, we propose a framework which mines treatment patterns in TCM clinical cases by exploiting supervised topic model and TCM domain knowledge. The framework can reflect principle rules in TCM and improve function prediction of a new prescription. We evaluate our method on 3090 real world TCM clinical cases. The experiment validates the effectiveness of our method. (C) 2015 Elsevier Inc. All rights reserved.
查看更多>>摘要:Social media offer insights of patients' medical problems such as drug side effects and treatment failures. Patient reports of adverse drug events from social media have great potential to improve current practice of pharmacovigilance. However, extracting patient adverse drug event reports from social media continues to be an important challenge for health informatics research. In this study, we develop a research framework with advanced natural language processing techniques for integrated and high-performance patient reported adverse drug event extraction. The framework consists of medical entity extraction for recognizing patient discussions of drug and events, adverse drug event extraction with shortest dependency path kernel based statistical learning method and semantic filtering with information from medical knowledge bases, and report source classification to tease out noise. To evaluate the proposed framework, a series of experiments were conducted on a test bed encompassing about postings from major diabetes and heart disease forums in the United States. The results reveal that each component of the framework significantly contributes to its overall effectiveness. Our framework significantly outperforms prior work. Published by Elsevier Inc.
查看更多>>摘要:Self-reported patient data has been shown to be a valuable knowledge source for post-market pharmacovigilance. In this paper we propose using the popular micro-blogging service Twitter to gather evidence about adverse drug reactions (ADRs) after firstly having identified micro-blog messages (also know as "tweets") that report first-hand experience. In order to achieve this goal we explore machine learning with data crowdsourced from laymen annotators. With the help of lay annotators recruited from CrowdFlower we manually annotated 1548 tweets containing keywords related to two kinds of drugs: SSRIs (eg. Paroxetine), and cognitive enhancers (eg. Ritalin). Our results show that inter-annotator agreement (Fleiss' kappa) for crowdsourcing ranks in moderate agreement with a pair of experienced annotators (Spearman's Rho = 0.471). We utilized the gold standard annotations from CrowdFlower for automatically training a range of supervised machine learning models to recognize first-hand experience. F-Score values are reported for 6 of these techniques with the Bayesian Generalized Linear Model being the best (F-Score = 0.64 and Informedness = 0.43) when combined with a selected set of features obtained by using information gain criteria. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.