首页期刊导航|Spectrochimica acta
期刊信息/Journal information
Spectrochimica acta
Pergamon
Spectrochimica acta

Pergamon

1386-1425

Spectrochimica acta/Journal Spectrochimica acta
正式出版
收录年代

    Probing 1D convolutional neural network adapted to near-infrared spectroscopy for efficient classification of mixed fish

    Chen, XinghaoCheng, GongyiLiu, ShuhanMeng, Sizhuo...
    9页
    查看更多>>摘要:Salmon and Cod are economically significant world-class fish that have high economic value. It is difficult to accurately sort and process them by appearance during harvest and transportation. Conventional chemical detection means are time-consuming and costly, which greatly affects the cost and efficiency of Fishery production. Therefore, there is an urgent need for smart Fisheries methods which use for the classification of mixed fish. In this paper, near-infrared spectroscopy (NIRS) was used to assess salmon and cod samples. This study aims to evaluate feasibility of a back-propagation neural network (BPNN) and a convolutional neural network (CNN) for identifying different species of fishes by the corresponding spectra in comparison to traditional chemometrics Partial Least Squares. After comparing the effects of different batch sizes, number of convolutional kernels, number of convolutional layers, and number of pooling layers on the classification of NIRS spectra comparing different structures of one-dimensional (1D)-CNN, we propose the 1D-CNN-8 model that is most suitable for the classification of mixed fish. Compared with the results of traditional chemometrics methods and BPNN, the prediction model of the 1D-CNN model can reach 98.00% Accuracy and the parameters are significantly better than others. Meanwhile, the parameters and floating-point operations of the optimal model are both small. Therefore, the improved CNN model based on the NIRS can effectively and quickly identify different kinds of fish samples and contribute to realizing edge computing at the same time. (C) 2022 Published by Elsevier B.V.

    One-step synthesis of blue emission copper nanoclusters for the detection of furaltadone and temperature

    Cai, Zhi-fengWang, Xian-songLi, Hao-yangCao, Peng-li...
    8页
    查看更多>>摘要:Polyvinyl pyrrolidone (PVP), playing roles as a templating agent, can be applied to prepare blue-emitting copper nanoclusters (Cu NCs@PVP) on the basis of a rapid chemical reduction synthesis method. The Cu NCs@PVP displayed a blue emission wavelength at 430 nm and the corresponding quantum yield (QY) could reach 10.4%. Subsequently, the as-synthesized Cu NCs@PVP were used for the trace analysis of furaltadone based on the inner filter effect (IFE) between Cu NCs@PVP and furaltadone, which caused the fluorescence to be effectively quenched. Additionally, this proposed determination platform based on the Cu NCs@PVP for furaltadone sensing possessed an excellent linear range from 0.5 to 100 mu M with a lower detection limit of 0.045 mu M (S/N = 3). Meanwhile, the Cu NCs@PVP also could be applied for the sensing of temperature. Furthermore, the practicability of the sensing platform has been successfully verified by measuring furaltadone in real samples, affirming its potential to increase fields for the determination of furaltadone. (C) 2022 Published by Elsevier B.V.

    A novel TCF-aza-BODIPY-based near-infrared fluorescent probe for highly selective detection of hypochlorous acid in living cells

    Wang, XuanWei, Yong-FengLin, Xin-RuYang, Fen...
    7页
    查看更多>>摘要:Hypochlorous acid/hypochlorite (HOCl/ClO-) plays important roles in killing bacterial and causing damage to living tissues, and its abnormal levels could lead to many diseases. Although great efforts have been devoted, fluorescent probes for HOCl/ClO- with near-infrared fluorescence, good selectivity/sensitivity, and low back-ground are still important and urgent. In this work, a novel double-bond-linked TCF-aza-BODIPY-based near -infrared fluorescent probe (3) was rationally designed, successfully prepared, and applied for sensing HOCl/ ClO- in both solutions and living RAW264.7 cells, showing good selectivity and fluorescence "turn-on " phe-nomenon at 670 nm with low background. The limit of detection towards ClO- was determined to be 0.36 mu M through the linear fluorescence changes at 670 nm in a broad ClO--concentration range of 0-150 mu M. Further-more, the sensing mechanism was investigated by mass spectrometry and compared with 1, suggesting that the remarkable spectroscopic changes could be ascribed to the oxidization of the double bond to the aldehyde group, accompanied with the leaving of the TCF group. Confocal imaging experiments also confirmed the remarkable intracellular fluorescence enhancements through incubation of ClO- and phorbol ester 12-myristate 13-acetate (PMA) in RAW264.7 cells. Therefore, for the first time, we reported a near-infrared TCF-aza-BODIPY-based fluorescent probe for highly sensitive and fluorescence "turn-on " detection of both exogenous and endogenous HOCl in living RAW264.7 cells through the quick oxidation of a conjugated double bond.

    Substituent derivatives of benzothiazole-based fluorescence probes for hydrazine with conspicuous luminescence properties: A theoretical study

    Cao, YunjianShang, ChangjiaoZheng, ZefeiSun, Chaofan...
    11页
    查看更多>>摘要:In the present work, four probe molecules for detecting hydrazine have been designed based on the 2-(4-Acetoxy 3-benzothiazole-2-yl-phenyl)-4-methyl-thiazole-5-carboxylic acid ethyl ester (HP1) to investigate the influence of the amino and cyano groups on the excited-state intramolecular proton transfer (ESIPT) behavior and photophysical properties. The changes in hydrogen bond strength indicate that the intramolecular hydrogen bond of all probe products is enhanced upon photoexcitation. Frontier molecular orbitals (FMOs) and natural bond orbital (NBO) reveal the driving force of ESIPT. In addition, the potential energy curves and transition state theory explain the reason for the single fluorescence phenomenon in the experiment. The simulated absorption and fluorescence spectra of HP1 and its product (HPP1) are completely consistent with the experimental results, which also verify the viewpoint. Meanwhile the cyano derivative HPP4 exhibits a larger Stokes-shift (201 nm) than that of HPP1 (145 nm) and has the same low energy barrier as HPP1. These excellent properties allow HPP4 to be a fluorescent probe with superior performance than the original molecule. In conclusion, this work can provide a theoretical basis for the design and synthesis of more sensitive fluorescent probes for the detection of hydrazine.

    A facile aptamer-based sensing strategy for dopamine detection through the fluorescence energy transfer between dye and single-wall carbon nanohorns

    Zhang, JiayuHou, ShanshanZhang, JiaxinZhao, Longshan...
    8页
    查看更多>>摘要:Dopamine (DBA) as an important biomarker, plays a crucial role in disease diagnosis. In this study, we have developed a fast and simple aptamer-based fluorescence strategy which used single-wall carbon nanohorns (SWCNHs) as a quencher for dopamine detection. SWCNHs were negatively charged after pretreated, which improved its dispersion in solution. 5-carboxy-fluorescein (FAM) was used to label dopamine aptamer. In the absence of dopamine, FAM-modified aptamer could be absorbed onto the SWCNHs surface due to pi-pi interaction, resulting in the fluorescence intensity decreased. Dopamine could specifically bind with FAM-DNA to form G-quadruplex, which could not be absorbed onto the surface of SWCNHs. Hence, the fluorescence of FAM-DNA recovered, and the fluorescent intensity as a function of different concentrations of dopamine was measured. We obtained a detection limit of 5 mu M for this detection system with a linear detection range of 0.02-2.20 mM. Furthermore, the feasibility of the innovative detection system has been verified by detecting dopamine in spiked serum samples.

    Pressure- and temperature-dependent Raman spectra of Ca2Fe2O5 oxygen defect perovskite

    Zhai, ShuangmengDai, BoXue, WeihongRumney, Justin D....
    5页
    查看更多>>摘要:The Raman spectra of Ca2Fe2O5 were investigated up to 21.8 GPa at room temperature and up to 1073 K at ambient pressure, respectively. A phase transition begins around 13.6 GPa and it is reversible after decompression. No temperature-induced phase transition was observed due to the quality of Raman spectra at temperatures above 773 K. The effects of pressure and temperature on the Raman vibration were quantitatively analyzed. All the observed Raman active vibrations of Ca2Fe2O5 show positive linear pressure dependences and negative temperature dependences with different slopes. Combined with previous experimental results, the isothermal and isobaric mode Gruneisen parameters of Ca2Fe2O5 were estimated, and the intrinsic anharmonicity was discussed.

    LiXO2(X = Co, Rh, Ir) and solar light photocatalytic water splitting for hydrogen generation

    Liang, Jia-ChengYang, Chuan-LuWang, Xue-Lin
    8页
    查看更多>>摘要:Alkali metal transition oxide LiCoO2 has been successfully commercialized as a lithium-ion battery material, and some attention is paid to its homologous derivatives LiRhO2 and LiIrO2. However, the photocatalytic properties have not been explored yet for these compounds. Using the first-principles calculations, we carry out investigations on the electronic properties, light absorption, and mobility to understand the feasibility of LiXO2(X = Co, Rh, Ir) for solar light photocatalytic hydrogen generation from water-splitting. The results show that the band edges of LiCoO2 and LiRhO2 meet the redox potential requirements of the water-splitting hydrogen evolution reaction. In addition, the enhanced absorptions of LiXO2(X = Co, Rh, Ir) in the visible light range imply that they could well respond to solar light, while the significant difference in the mobilities of electrons or holes can strengthen spatial charge separation of the photoexcited electron-hole pairs. The solar-energy-to-hydrogen conversion efficiencies of LiCoO2 and LiRhO2 can reach 11.2% and 15.5%, respectively. The results support LiCoO2 and LiRhO2 as promising candidates for visible-light photocatalytic hydrogen production from water-splitting.

    Development of multi-disturbance bagging Extreme Learning Machine method for cadmium content prediction of rape leaf using hyperspectral imaging technology

    Cheng, JiehongSun, JunYao, KunshanXu, Min...
    7页
    查看更多>>摘要:Exploring the cadmium (Cd) pollution in rape is of great significance to food safety and consumer health. In this study, a rapid, nondestructive and accurate method for the determination of Cd content in rape leaves based on hyperspectral imaging (HSI) technology was proposed. The spectral data of rape leaves under different Cd stress from 431 nm to 962 nm were collected by visible-near infrared HSI spectrometer. In order to improve the robustness and accuracy of the regression model, a machine learning algorithm was proposed, named multidisturbance bagging Extreme Learning Machine (MdbaggingELM). The prediction models of Cd content in rape leaves based on MdbaggingELM and ELM-based method (ELM and baggingELM) were established and compared. The results showed that the model of the proposed MdbaggingELM method performed significantly in the prediction of Cd content, with Rp2 of 0.9830 and RMSEP of 2.8963 mg/kg. The results confirmed that MdbaggingELM is an efficient regression algorithm, which played a positive role in enhancing the stability and the prediction effect of the model. The combination of MdbaggingELM and HSI technology has great potential in the detection of Cd content in rape leaves.

    Stimulus responsive luminescence and application of rotor type 1,1 '-([2,2 '-bithiophene]-3,3 '-diyl)bis(ethan-1-one) and 3 '-acetyl-[2,2 '-bithiophene]-3-carbaldehyde as molecular rotors

    Liang, Wen JuanWu, Wen XinLu, ZhenBai, Yun Feng...
    10页
    查看更多>>摘要:Two dithiophene aldehyde/ketone derivatives are designed as luminescence molecular rotors, i.e., 1,1'-([2,2'-bithiophene]-3,3'-diyl)bis(ethan-1-one) (BTBE) and 3'-acetyl-[2,2'-bithiophene]-3-carbaldehyde (BTAC). Their absorption and luminescence properties, as well as the stimulus responsive luminescence characteristics of water spikes are studied in detail. In order to further explore relationship of luminescence and molecular structure, three reference compounds are also synthesized, named 1-(2-methylthiophen-3-yl)ethanone (MTE), 2-methylthiophene-3-carbaldehyde (MTC) and 4H-cyclohepta[1, 2-b:7,6-b']dithiophen-4-one (CDTO). BTBE and BTAC have two obvious absorption bands in the short wavelength region with peak wavelengths of about 212 nm and 260 nm, respectively, while there is a weak trailing type absorption band in the range of about 300-400 nm. Their fluorescence spectra show two luminescence bands in the range of 280-350 nm and 400-600 nm, respectively, and the latter is stronger. Compared with the absorption and luminescence spectra of the reference compounds, it is determined that two absorption bands of BTBE and BTAC in shorter wavelength region are derived from the single thiophene ring carbonyl planar unit, while the absorption band in longer region are derived from the integrated structure of dithiophene carbonyl. The fluorescence bands with peaks of about 300 nm and 470 nm originate respectively from the localized F-C vertical excited states (LE), i.e., the excited state from single planar thienyl-carbonyl unit, and integrated excited state (IE), i.e., the excited state from integrated di-thienyl-carbonyl rings linked covalently with less dihedral angle and greater degree of conjugation at excited state. The crystal structure data show that two thiophene rings possess larger dihedral angles in crystal states, 86.9 degrees for BTBE and 60.8 degrees for BTAC, respectively. However, theoretical calculation results prove the conformational stabilization energy changes little, less than 1.5 kcal/mol, as dihedral angle changes from 50 degrees to 100 degrees. Hydrogen bonding is sufficient to overcome the energy required for this conformational change. Therefore, both BTBE and BTAC can produce water stimulation response luminescence behavior. This stimulating response behavior of BTBE and BTAC can be applied to the preparation of water writable film materials. (C) 2022 Elsevier B.V. All rights reserved.

    One-pot fabrication of Mo1-xWxS2 alloy nanosheets as SERS substrates with highly Raman enhancement effect and long-term stability

    Liang, PeiChen, QiangSun, BiaoShang, Ziyang...
    8页
    查看更多>>摘要:A new Mo1-xWxS2 two-dimensional nanosheets were prepared by the one-pot method. After certain Mo atoms in MoS2 were replaced by W ones in a hydrothermal reduction procedure, Mo1-xWxS2 was formed on the Mo foil. Well enhanced Mo1-xWxS2 nanosheets were prepared when the sodium tungstate concentration got under control. Various characterizations were carried out, which indicate that Mo1-xWxS2 nanosheets with good crystallinity. Compared with MoS2, the Raman intensity of Rhodamine 6G (10-6 M) was amplified by 1.7 times with Mo1-xWxS2 nanosheets as the substrate. The characteristic Raman peaks could still be clearly distinguished until the concentration of Rhodamine 6G (R6G), Methylene blue (MB) and Crystal violet (CV) down to 10-8, 10-8 and 10- 7 M, respectively. With abundant edge active sites that facilitate charge transfer, Mo1-xWxS2 nanosheets could better enhance SERS signals of target detection molecules and get a good linear relationship exists within the concentration and Raman peak strength. In addition, R6G SERS detection also shows excellent reproducibility and long-term stability of this TMDs SERS substrate.