首页|Development of multi-disturbance bagging Extreme Learning Machine method for cadmium content prediction of rape leaf using hyperspectral imaging technology
Development of multi-disturbance bagging Extreme Learning Machine method for cadmium content prediction of rape leaf using hyperspectral imaging technology
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
Exploring the cadmium (Cd) pollution in rape is of great significance to food safety and consumer health. In this study, a rapid, nondestructive and accurate method for the determination of Cd content in rape leaves based on hyperspectral imaging (HSI) technology was proposed. The spectral data of rape leaves under different Cd stress from 431 nm to 962 nm were collected by visible-near infrared HSI spectrometer. In order to improve the robustness and accuracy of the regression model, a machine learning algorithm was proposed, named multidisturbance bagging Extreme Learning Machine (MdbaggingELM). The prediction models of Cd content in rape leaves based on MdbaggingELM and ELM-based method (ELM and baggingELM) were established and compared. The results showed that the model of the proposed MdbaggingELM method performed significantly in the prediction of Cd content, with Rp2 of 0.9830 and RMSEP of 2.8963 mg/kg. The results confirmed that MdbaggingELM is an efficient regression algorithm, which played a positive role in enhancing the stability and the prediction effect of the model. The combination of MdbaggingELM and HSI technology has great potential in the detection of Cd content in rape leaves.