首页期刊导航|International Journal of Biological Macromolecules
期刊信息/Journal information
International Journal of Biological Macromolecules
Butterworths
International Journal of Biological Macromolecules

Butterworths

0141-8130

International Journal of Biological Macromolecules/Journal International Journal of Biological MacromoleculesSCIISTPEI
正式出版
收录年代

    Oxidized forms of uromodulin promote calcium oxalate crystallization and growth, but not aggregation

    Chaiyarit S.Thongboonkerd V.
    12页
    查看更多>>摘要:? 2022 Elsevier B.V.Roles of an abundant human urinary protein, uromodulin (UMOD), in kidney stone disease were previously controversial. Recently, we have demonstrated that oxidative modification reverses overall modulatory activity of whole urinary proteins, from inhibition to promotion of calcium oxalate (CaOx) stone-forming processes. We thus hypothesized that oxidation is one of the factors causing those previously controversial UMOD data on stone modulation. Herein, we addressed effects of performic-induced oxidation on CaOx crystal modulatory activity of UMOD. Sequence analyses revealed two EGF-like calcium-binding domains (65th–107th and 108th–149th), two other calcium-binding motifs (65th-92nd and 108th–135th), and three oxalate-binding motifs (199th–207th, 361st-368th and 601st-609th) in UMOD molecule. Analysis of tandem mass spectrometric dataset of whole urinary proteins confirmed marked increases in oxidation, dioxidation and trioxidation of UMOD in the performic-modified urine samples. UMOD was then purified from the normal urine and underwent performic-induced oxidative modification, which was confirmed by Oxyblotting. The oxidized UMOD significantly promoted CaOx crystallization and crystal growth, whereas the unmodified native UMOD inhibited CaOx crystal growth. However, the oxidized UMOD did not affect CaOx crystal aggregation. Therefore, our data indicate that oxidized forms of UMOD promote CaOx crystallization and crystal growth, which are the important processes for CaOx kidney stone formation.

    Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition

    Garcia-Fuentevilla L.Martin-Sampedro R.Eugenio M.E.Ibarra D....
    14页
    查看更多>>摘要:? 2022 The AuthorsThis work focuses on the structural features and physicochemical properties of different Kraft lignins and how they can influence the electrospinning process to obtain nanostructures. Structural features of Kraft lignins were characterized by nuclear magnetic resonance, size exclusion chromatography, fourier-transform infrared spectroscopy, and thermal analysis, whereas chemical composition was analyzed by standard method. The addition of cellulose acetate (CA) improves the electrospinning process of Kraft lignins (KL). Thus, solutions of KL/CA at 30 wt% with a KL:CA weight ratio of 70:30 were prepared and then physicochemical and rheologically characterized. The morphology of electrospun nanostructures depends on the intrinsic properties of the solutions and the chemical structure and composition of Kraft lignins. Then, surface tension, electrical conductivity and viscosity of eucalypt/CA and poplar/CA solutions were suitable to obtain electrospun nanostructures based on uniform cross-linked nanofibers with a few beaded fibers. It could be related with the higher purity and higher linear structure, phenolic content and S/G ratios of lignin samples. However, the higher values of electrical conductivity and viscosity of OTP/CA solutions resulted in electrospun nanostructure with micro-sized particles connected by thin fibers, due to a lower purity, S/G ratio and phenolic content and higher branched structure in OTP lignin.

    Chitosan mediated layer-by-layer assembly based graphene oxide decorated surface plasmon resonance biosensor for highly sensitive detection of β-amyloid

    Nangare S.Patil P.
    15页
    查看更多>>摘要:? 2022Alzheimer's disease (AD), and its consequent effect primarily clinical dementia, Parkinson's disease dementia, etc. currently bring potential avenues for diagnosis centered on identification of beta-amyloid1–42 (Aβ1–42). Unfortunately, techniques engaged in AD core biomarker (Aβ1–42) detection are majorly suffering from poor sensitivity and selectivity. Thus, we fabricated graphene oxide (GO) surface decorated chitosan (CS) mediated layer-by-layer (LbL) assembly based surface plasmon resonance (SPR) biosensor for highly sensitive and selective recognition of Aβ1–42. Briefly, silver nanoparticles (AgNPs) and GO synthesis were achieved through a greener approach. LbL assembly was designed using CS and polystyrene sulphonate (PSS) on surface of AgNPs (AgNPs-CS-PSS-CS) and then antibodies of Aβ (anti-Aβ) were fixed on LbL assembly (AgNPs-CS-PSS-CS@anti-Aβ). Herein, amine functionality of CS offers a plethora of sites for anti-Aβ antibody immobilization that gives specific direction, high selectivity, and an adequate amount of antibody immobilization. For fabrication, synthesized GO was immobilized on an amine-modified gold-coated sensor chip via carbodiimide chemistry followed by AgNPs-CS-PSS-CS@anti-Aβ immobilization on an activated GO surface. Inimitable features of LbL assembly showed improved selectivity towards Aβ peptide whereas utilization of affinity biotransducer with a combination of plasmonic and non-plasmonic nanomaterial improved sensitivity and selectivity. Consequently, linearity range and limit of detection (LOD) of Aβ1–42 antigens were found to be 2 fg/mL to 400 ng/mL and 1.21 fg/mL, respectively. Moreover, analysis of Aβ1–42 in AD-induced rats confirmed the real-time-applicability of the designed SPR biosensor. Hence, GO surface decorated AgNPs-CS-PSS-CS@anti-Aβ mediated SPR biosensor would provide a novel approach for exceptionally sensitive and selective Aβ detection.

    miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: A spotlight on signaling pathways interplay — A review

    Elrebehy M.A.Al-Saeed S.Gamal S.El-Sayed A....
    18页
    查看更多>>摘要:? 2022 Elsevier B.V.Colorectal cancer (CRC) is the world's third most prevalent cancer and the main cause of cancer-related mortality. A lot of work has been put into improving CRC patients' clinical care, including the development of more effective methods and wide biomarkers variety for prognostic, and diagnostic purposes. MicroRNAs (miRNAs) regulate a variety of cellular processes and play a significant role in the CRC progression and spread via controlling their target gene expression by translation inhibition or mRNA degradation. Consequently, dysregulation and disruption in their function, miRNAs are linked to CRC malignant pathogenesis by controlling several cellular processes involved in the CRC. These cellular processes include increased proliferative and invasive capacity, cell cycle aberration, evasion of apoptosis, enhanced EMT, promotion of angiogenesis and metastasis, and decreased sensitivity to major treatments. The miRNAs control cellular processes in CRC via regulation of pathways such as Wnt/β-catenin signaling, PTEN/AKT/mTOR axis, KRAS, TGFb signaling, VEGFR, EGFR, and P53. Hence, the goal of this review was to review miRNA biogenesis and present an updated summary of oncogenic and tumor suppressor (TS) miRNAs and their potential implication in CRC pathogenesis and responses to chemotherapy and radiotherapy. We also summarise the biological importance and clinical applications of miRNAs in the CRC.

    Structural, physicochemical properties, and digestibility of lotus seed starch-conjugated linoleic acid complexes

    Liu S.Sun S.Chen W.Jia R....
    9页
    查看更多>>摘要:? 2022 Elsevier B.V.This paper describes a new method combining octenyl succinic anhydride (OSA) esterification and high hydrostatic pressure for starch modification, which interacts with conjugated linoleic acid (CLA) to form an octenyl succinic anhydride-lotus seed starch-conjugated linoleic acid (OSA-LS-CLA) complex. This method proves the formation of complex observed by fourier transform infrared spectroscopy and complex index. The stable structure of the complex was derived from increasing molecular weight by introducing macromolecular conjugated linoleic acid and the higher crystallinity than original starch observed by X-ray diffraction. The formation method and changes of complex were observed by scanning electron microscopy and confocal laser scanning microscope. The solubility and swelling power of the complex increases as the temperature increased, significantly at 75 °C. The formation of the OSA-LS-CLA complex significantly reduced the digestion rate of LS, which was 26 % lower than that of LS. These results indicate that the OSA-LS-CLA under high hydrostatic pressure can form a complex with stable structure, which makes up for the deficiency of raw starch to a certain extent. And the formation of this structure can improve the thermal stability of the complex and has strong digestion resistance, which provides a potential direction for further research in reducing starch digestibility.

    Colistimethate sodium-chitosan hydrogel for treating Gram-negative bacterial wound infections

    Pradeep A.Priya V.Jayakumar R.Pillai A.V....
    7页
    查看更多>>摘要:? 2022 Elsevier B.V.The drug resistance is higher among Gram-negative bacteria and demands the usage of strong antibiotics which can in turn result in systemic toxicity. In the treatment of the chronic wounds harboring pathogenic Gram-negative bacteria, the demand for an antimicrobial product that can be topically administered has been on the rise. In an effort to address the above issue, we have developed Colistimethate sodium (a high-end antibiotic) loaded chitosan hydrogel and characterized. The prepared hydrogel is very stable and observed to be bio- and hemo-compatible in nature. The antibacterial activity of the prepared hydrogel was studied against both ATCC (American Type Culture Collection) strains and clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. The CMS incorporated hydrogel is also capable of inhibiting the biofilm formation. The developed hydrogel can be potentially being used for the treatment of Gram-negative bacterial infected wounds.

    Novel biohybrid spongy scaffolds for fabrication of suturable intraoral graft substitutes

    Mehwish N.Lee B.H.Deng H.Zaeem M....
    15页
    查看更多>>摘要:? 2022 Elsevier B.V.Despite the fact that classic autograft is the gold standard material for periodontal plastic surgery, it has some drawbacks, including the need for a second surgical site and the scarcity of palatal donor tissues. However, only a few research works on the manufacturing of bioengineered intraoral connective tissue grafts have been conducted. In this work, porous bovine serum albumin methacryloyl/gelatin methacryloyl (BG) biohybrid scaffolds were developed for super-elasticity, shape recovery, suturability for persistent stability, sufficient scaffolding function, and convenient manipulating characteristics to fabricate an intraoral graft substitute with superb stability to resist frequent dynamic forces caused by functional movement (speaking, masticating, and swallowing). Furthermore, in a 3D cell culture assay, BG scaffolds demonstrated excellent cell adhesion and proliferation of L929 cells. In addition, the BG scaffolds were able to release Ibuprofen in a controlled manner for postoperative recovery. The use of a low-cost, optimized cryogelation technique for functional biomacromolecules offers up new possibilities to develop promising scaffolds for dental clinical settings.

    Chitosan nanoparticles and their combination with methyl jasmonate for the elicitation of phenolics and flavonoids in plant cell suspension cultures

    Arya S.S.Rookes J.E.Cahill D.M.Lenka S.K....
    10页
    查看更多>>摘要:? 2022Productivity enhancement approaches, such as elicitation can overcome the limitations of low metabolite(s) yield in in vitro plant cell culture platforms. Application of biotic/abiotic elicitors triggers molecular responses that lead to a concomitant enhancement in the production of metabolites. Nanoparticles have been tested as alternatives to commonly studied biotic/abiotic elicitors. However, most nanoparticles explored are of metallic origin, which raises concerns about their cytotoxicity, disposal post-elicitation, and may limit downstream applications of metabolites. Here, we report the synthesis and application of biopolymeric methyl jasmonate-loaded chitosan nanoparticles (MJ-CNPs) and empty CNPs (size <100 nm) as nano-elicitors, which were simple to synthesize, cost-effective and safe. Enzymatic and metabolic investigations revealed that MJ-CNPs and empty CNPs improve and prolong phenylalanine ammonia-lyase enzyme activity and production of phenolics and flavonoids. The data provides the first evidence of MJ-CNPs and empty CNPs as nano-elicitors that prolong the production of metabolites in plant cell suspension cultures.

    Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure

    Saboury A.A.Zolghadri S.Salehi N.Ahmad F....
    13页
    查看更多>>摘要:? 2022 Elsevier B.V.Increasing the temperature by just a few degrees may lead to structural perturbation or unfolding of the protein and consequent loss of function. The concepts of flexibility and rigidity are fundamental for understanding the relationships between function, structure and stability. Protein unfolding can often be triggered by thermal fluctuations with flexible residues usually on the protein surface. Therefore, identification and knowledge of the effect of modification to flexible regions in protein structures are required for efficient protein engineering and the rational design of thermally stable proteins. The most flexible regions in protein are loops, hence their rigidification is one of the effective strategies for increasing thermal stability. Directed evolution or rational design by computational prediction can also lead to the generation of thermally stable proteins. Computational protein design has been improved significantly in recent years and has successfully produced de novo stable backbone structures with optimized sequences and functions. This review discusses intramolecular and intermolecular interactions that determine the protein structure, and the strategies utilized in the mutagenesis of mesophilic proteins to stabilize and improve the functional characteristics of biocatalysts by describing efficient techniques and strategies to rigidify flexible loops at appropriate positions in the structure of the protein.

    Polysaccharide from Hovenia dulcis (Guaizao) improves pancreatic injury and regulates liver glycometabolism to alleviate STZ-induced type 1 diabetes mellitus in rats

    Yang B.Luo Y.Wei X.Kan J....
    9页
    查看更多>>摘要:? 2022 Elsevier B.V.Hovenia dulcis is a traditional medicinal and edible plant and has a major geographical presence in China. In this study, a polysaccharide purified from H. dulcis (HDPs-2A) was found to ameliorate type 1 diabetes mellitus (T1DM) in streptozotocin-induced diabetic rat. HDPs-2A treatment resulted in significantly lower fasting blood glucose levels, but higher body weight, plasma insulin, and liver glycogen levels. Moreover, HDPs-2A improved dyslipidemia, pancreatic oxidative stress, and reduced serum pro-inflammatory factors. In addition, HDPs-2A up-regulated PDX-1, activated and up-regulated IRS2 expression, and regulated apoptosis and regeneration of islet β cells to recover islet β-cell function injury in TIDM rats. HDPs-2A also up-regulated the expression of pancreatic GK and GLUT2 to improve insulin secretion ability of islet β-cells, ultimately improving the glucose metabolism disorder of T1DM rats. Moreover, HDPs-2A significantly up-regulated the expression of GK and down-regulated the expression of G6Pase in liver to improve liver glycogen synthesis, inhibit liver gluconiogenesis, and improve liver glucose metabolism disorder of T1DM rats. In summary, the hypoglycemic mechanisms of HDPs-2A may include regulating the regeneration and apoptosis of islet β-cells and activating liver glycometabolism-related signaling pathways in T1DM rats.