首页期刊导航|Journal of Colloid and Interface Science
期刊信息/Journal information
Journal of Colloid and Interface Science
Academic Press
Journal of Colloid and Interface Science

Academic Press

0021-9797

Journal of Colloid and Interface Science/Journal Journal of Colloid and Interface ScienceSCIAHCIISTPEI
正式出版
收录年代

    Naked-eye sensing and target-guiding treatment of bacterial infection using pH-tunable multicolor luminescent lanthanide-based hydrogel

    Ou K.Wang Q.Liao Y.Yang Y....
    10页
    查看更多>>摘要:? 2021 Elsevier Inc.In this work, a pH-tunable multicolor luminescent lanthanide-based hydrogel (CS/DEX/CP) was prepared based on lanthanide coordination polymer (CP), dextran aldehyde (DEX) and chitosan (CS). The CP was obtained by the self-assembly of guanosine acid (GMP), ciprofloxacin (CIP), Eu3+, and Tb3+. As-prepared CS/DEX/CP hydrogel could emit blue, green, and red luminescence of CIP, Tb3+, and Eu3+, respectively. It was also found that the luminescence of CS/DEX/CP hydrogel exhibited visual color change in the pH range of 5.5 to 8. Such pH-sensitive hydrogel was multicolor-responsive to protons produced by bacterial growth, therefore, it could provide early warning of bacterial infection by naked-eye. In addition, the increased acidity resulted in not only the degradation of acid-labile Schiff base linkages between DEX and CS, but also the fracture of coordination between CIP and lanthanide ions. As a result, the released CIP and CS showed significantly antibacterial activity against both S. aureus and E. coli.

    Ex situ and in situ Magnetic Phase Synthesised Magneto-Driven Alginate Beads

    Benito-Lopez F.Basabe-Desmonts L.Venkatesan M.Bimendra Gunatilake U....
    10页
    查看更多>>摘要:? 2021 The Author(s)Biocompatible magnetic hydrogels provide a great source of synthetic materials, which facilitate remote stimuli, enabling safer biological and environmental applications. Prominently, the ex situ and in situ magnetic phase integration is used to fabricate magneto-driven hydrogels, exhibiting varied behaviours in aqueous media. Therefore, it is essential to understand their physicochemical properties to target the best material for each application. In this investigation, three different types of magnetic alginate beads were synthesised. First, by direct, ex situ, calcium chloride gelation of a mixture of Fe3O4 nanoparticles with an alginate solution. Second, by in situ synthesis of Fe3O4 nanoparticles inside of the alginate beads and third, by adding an extra protection alginate layer on the in situ synthesised Fe3O4 nanoparticles alginate beads. The three types of magnetic beads were chemically and magnetically characterised. It was found that they exhibited particular stability to different pH and ionic strength conditions in aqueous solution. These are essential properties to be controlled when used for magneto-driven applications such as targeted drug delivery and water purification. Therefore, this fundamental study will direct the path to the selection of the best magnetic bead synthesis protocol according to the defined magneto-driven application.

    Enhanced peroxymonosulfate activation by hierarchical porous Fe3O4/Co3S4 nanosheets for efficient elimination of rhodamine B: Mechanisms, degradation pathways and toxicological analysis

    Shi X.Hong P.Huang H.Yang D....
    15页
    查看更多>>摘要:? 2021 Elsevier Inc.Fenton-like catalysts have usually superior catalytic activities, however, some drawbacks of ion leaching and difficult-to-recovery limit their applications. In this work, a hierarchical porous Fe3O4/Co3S4 catalyst was fabricated via a simple phase change reaction to overcome these shortcomings. The introduced iron cooperates with cobalt achieving high-efficiency activation of peroxymonosulfate (PMS) to eliminate Rhodamine B (RhB). The results showed that 0.05 g/L Fe3O4/Co3S4 and 1 mM PMS could quickly remove 100% of 200 mg/L RhB within 20 min, and the removal rate of RhB remained above 82% after 5 cycles. Moreover, the as-prepared Fe3O4/Co3S4 possessed a great magnetic separation capacity and good stability of low metal leaching dose. Radical quenching experiments and electron paramagnetic resonance (EPR) techniques proved that sulfate radicals (SO4??) were the dominant reactive oxygen species responding for RhB degradation. X-ray photoelectron spectroscopy (XPS) pointed out that the synergism of sulfur promoted the cycling of Co3+/Co2+ and Fe3+/Fe2+, boosting the electron transfer between Fe3O4/Co3S4 and PMS. Moreover, the degradation pathways of RhB were deduced by combining liquid chromatography-mass spectrometry (LC-MS) analysis and density functional theory (DFT) calculations. The toxicities of RhB and its intermediates were evaluated as well, which provided significant assistance in the exploration of their ecological risks.

    Screening of the binding affinity of serum proteins to lipid nanoparticles in a cell free environment

    Sebastiani F.Cardenas M.Lindfors L.Yanez Arteta M....
    9页
    查看更多>>摘要:? 2021 The AuthorsLipid nanoparticles (LNPs) are promising drug and gene carriers. Upon intravenous administration, LNPs’ experience different degree of cellular uptake depending on their formulation. Currently, in vitro and in vivo studies are the gold standard for assessing the fate of nano carriers once administered, but they are time consuming and expensive. In this work, we propose a time and cost-effective method to screen a wide range of LNP formulations and select the most promising candidates for in vitro and in vivo studies. Two different approaches were explored to investigate the binding affinity between LNPs and serum proteins using sensor functionalisation with either protein specific antibody or PEG specific antibody. The first approach allowed to identify the presence of a specific protein in the protein corona of lipid particles (reconstituted and native high-density lipoproteins (rHDL and HDL), and low-density lipoproteins LDL); while the second one provided a versatile platform for the immobilisation of pegylated-particles in order to follow the interaction with serum proteins and hence predict the composition of LNP protein corona. Sensing was done using Quartz Crystal Microbalance with Dissipation (QCM-D) but the approach is extendable to other surface sensing techniques such as Surface Plasmon Resonance (SPR) or ellipsometry.

    Laser In-Situ synthesis of metallic cobalt decorated porous graphene for flexible In-Plane microsupercapacitors

    Yuan M.Luo F.Chen X.Li H....
    10页
    查看更多>>摘要:? 2021 Elsevier Inc.Transition metal nanoparticles-graphene nanocomposites incorporate the advantages of graphene and metal nanoparticles, which arouse extensive attention. Here, we design a novel, facile and versatile method for in-situ synthesis of laser-induced porous graphene (LIG) decorated with cobalt particles (Co). The LIG/Co nanocomposites are fabricated through one-step laser direct scribing on a customized film composed of polyimide (PI) powder, polyvinyl alcohol (PVA), and cobalt chloride (CoCl2·6H2O) precursors. Benefiting from the unique properties of Co nanoparticles embedded LIG, the obtained optimal in-plane micro-supercapacitors (IMSC) based on LIG/Co-1.5 possesses an excellent areal capacitance of 110.11 mF cm?2 and a superior energy density of 9.79 μWh cm?2, which are about 79 times that of pure LIG-based IMSCs. Simultaneously, the LIG/Co-1.5 MSCs also present good cycling stability, remarkable modular integration capability, and outstanding mechanical flexibility, showing potential for practical applications. Additionally, the density functional theory (DFT) calculations indicate that the decorating of cobalt particles elevates electron transfer. Moreover, the interaction between electrolyte and electrodes is also improved with the introduction of cobalt particles. Therefore, this strategy offers a new avenue for facile and large-scale manufacturing of various metallic atoms in-situ decorating in porous graphene.

    Modelling cetrimonium micelles as 4-OH cinnamate carriers targeting a hydrated iron oxide surface

    Soto Puelles J.Ghorbani M.Ackland M.L.Chen F....
    11页
    查看更多>>摘要:? 2021 Elsevier Inc.Hypothesis: Molecular interactions between 4-OH-cinnamate and cetrimonium in solution result in improved adsorption of the cinnamate on mild steel, developing a protective mechanism against the diffusion of corrosive chloride to the oxide surface. Fundamental understanding of this mechanism should allow new design routes for the development of eco-friendly corrosion inhibitors. Experiments: Via classic molecular dynamics, simulations were carried out for cetrimonium and 4-OH-cinnamate in aqueous solutions at different ionic strengths and the results were validated with experimental SAXS data. Self-aggregation of cetrimonium 4-OH-cinnamate on a hydrated hematite surface was then simulated and results were compared with cryo-TEM imaging for the same compound. Finally, the effect of the adsorbed aggregates on chloride diffusion to the oxide surface was modelled. Findings: Simulations showed the encapsulation of 4-OH-cinnamate into cetrimonium micelles, consistent with experiments. The newly formed micelles adsorb onto a hydrated iron oxide surface by forming hydrogen bonds between their carboxylate outer-shell groups and the surface hydroxyls. As the adsorbate concentrations increase, there is a morphological transition from spherical to wormlike adsorbed aggregates. The wormlike structure can block chloride ions, demonstrating a synergistic inhibitory mechanism between both cetrimonium and 4-OH-cinnamate. Encapsulation and delivery of active compounds to certain targets, such as carcinogenic tumors, have been well studied in biochemistry research, we demonstrate that the same mechanism can be applied to the design of efficient corrosion inhibitors, optimizing their delivery to the metal surface.

    A new zinc-ion battery cathode with high-performance: Loofah-like lanthanum manganese perovskite

    Zhu T.Cai X.Wang X.Gao D....
    9页
    查看更多>>摘要:? 2021 Elsevier Inc.Due to high safety and excellent rate performance, the aqueous Zn-ion battery is a promising energy storage battery for practical application. However, most manganese-based compounds suffer from poor cycling and rate performance. Herein, a new concept of Zn-ions battery is assembled with the loofah-like LaMnO3 perovskite as a novel cathode, achieving fast ion kinetics through the co-intercalation of Zn2+ and H+ cations. In this work, the Ni-doping strategy is adopted to improve the electrochemical performance of LaMnO3 perovskite as a cathode material for Zn-ion batteries. The resultant LaNixMn1-xO3 (x = 0.2) exhibits a superior capacity of 226 mAh g?1 after 80 cycles at 100 mA g?1 and high working voltages at 1.4 V and 1.26 V vs. Zn2+/Zn in the electrolyte of 2 M ZnSO4 + 0.2 M MnSO4. Even at 500 mA g?1, the new Zn/LaNixMn1-xO3 battery still delivers a discharge capacity of 113 mAh g?1 after 1000 cycles. At medium current density, the electrochemical process of the LaNixMn1-xO3 (x = 0.2) electrode is co-controlled by the solid diffusive and surface-capacitive process with a fast ion diffusion rate. The lanthanum manganese perovskite is a potential cathode material for Zn-ion batteries with long cycle performance and high rate cyclability. This work significantly opens up the way of perovskite materials as new cathodes for high-rate ZIBs.

    RGO/Manganese Silicate/MOF-derived carbon Double-Sandwich-Like structure as the cathode material for aqueous rechargeable Zn-ion batteries

    Dong X.Mu Y.Hu T.Miao C....
    13页
    查看更多>>摘要:? 2021 Elsevier Inc.Aqueous rechargeable Zn-ion batteries (ARZIBs) have been attracting a great deal of attention due to their immense potential in large-scale power grid applications. It is of great significance to explore cathode material with novel designed structure and first-class performances for ARZIBs. Herein, we successfully construct a double-sandwich-like structure, MOF-derived carbon/manganese silicate/reduced graphene oxide/manganese silicate/MOF-derived carbon (denoted as rGO/MnSi/MOF-C), as the cathode material for ARZIBs. Among the double-sandwich-like structure, manganese silicate (Mn2SiO4, denoted as MnSi) is in the middle of internal reduced graphene oxide (rGO) and external MOF-8 derived carbon (MOF-C). This integrated rGO/MnSi/MOF-C with double-sandwich-like structure can not only avert the sluggish electronic conduction progress caused by the conventional three-phase mixture system of rGO, MnSi and MOF-C, but also display promising Zn2+ storing capability. As expected, in mild aqueous 2 M (mol L?1) ZnSO4 + 0.2 M MnSO4 electrolyte, the initial discharge capacity of rGO/MnSi/MOF-C cathode reaches to 246 mAh·g?1, and the peak discharge capacity reaches to 462 mAh·g?1 at 0.1 A·g?1. This work not only involves the novel MnSi-based cathode for ARZIBs, but also first demonstrates our assumption of constructing the double-sandwich-like structure to improve Zn2+ storage. Moreover, the concept “double-sandwich-like structure” provides an idea for synthesizing the integrated carbon/transition metal silicates (TMSs)/carbon structure to boost the electrochemical properties of TMSs for energy-storing devices.

    Simple carbonaceous-material-loaded mesoporous SiO2 composite catalyst for epoxide-CO2 cycloaddition reaction

    Zhang X.Liang L.Sun J.Ye Y....
    12页
    查看更多>>摘要:? 2021 Elsevier Inc.In this paper, a novel arginine-glucose derived carbonaceous-material-loaded SiO2 composite catalyst (Ar-G-CM/SiO2) was synthesized from non-toxic and harmless reagents (arginine, glucose and tetraethylorthosilicate) by simple hydrothermal process. Mesoporous SiO2 with high specific area served as support for carbonaceous material and provided extra hydrogen bond donor (HBD) groups. Ar-G-CM/SiO2 with acid-base dual functional groups ([sbnd]COOH, [sbnd]NH2) and HBD group ([sbnd]OH) presented 62% yield and 99% selectivity to product of propylene carbonate in CO2 cycloaddition reaction with propylene oxide even at 40 °C, 2 MPa under metal-absent and solvent-free conditions. For some less active epoxides with steric hindrance, Ar-G-CM/SiO2 also showed good yield and selectivity over 90% by raising temperature to 120 °C. Furthermore, the Ar-G-CM/SiO2 catalyst could be reused for six successive cycles without significant decrease in catalytic activity or structural deterioration, because the carbon deposition was restrained owing to the mesoporous structure of the catalyst.

    Transition kinetics of mixed lipid:photosurfactant assemblies studied by time-resolved small angle X-ray scattering

    Royes J.Brun G.Tribet C.Bjornestad V.A....
    12页
    查看更多>>摘要:? 2021 Elsevier Inc.Hypothesis: Photoswitchable surfactants are used in the design of many light-responsive colloids and/or self-assemblies. Photo-isomerization enables to control molecular equilibrium, and triggers transient reorganizations with possibly out-of-equilibrium intermediate states that have been overlooked. Here, we address this question by an in depth structural investigation of intermediate lipid-surfactant assemblies that occur during fast isothermal photo-triggered transition in lipid:surfactant mixtures. Experiments: The structural parameters of mixed assemblies of azobenzene-containing cationic surfactant (AzoTMA) and dioleoylphosphatidylcholine (DOPC) lipids were studied by light scattering and time-resolved small angle X-ray scattering. Structural and compositional information about the assemblies and unimers in bulk were determined at the photostationary states, as well as at intermediate kinetic states formed during UV or blue light illumination. Findings: DOPC:AzoTMA systems form mixed assemblies representative of phospholipid:cationic surfactant mixtures, that evolve from spheroid, to rod-like micelles, and vesicles with increasing DOPC fraction. Transient assemblies detected during the photo-triggered kinetics are similar to the ones found in stationary states. But changes of AzoTMA unimers in bulk can be considerably faster than mass reorganizations of the mixed assemblies, suggesting that out-of-equilibrium conditions are transiently reached. Mass reorganization of the surfactant-enriched assemblies is much faster than in the lipid enriched ones, providing insight into the role of lipids in a slow reorganization of the assemblies.